Fri, 03 Feb 2023

15:30 - 16:30
Large Lecture Theatre, Department of Statistics, University of Oxford

Statistics' Florence Nightingale Lecture

Professor Marloes Matthuis
(ETH Zurich)
Further Information

Title: “Causal learning from observational data”

Please register in advance using the online form: https://www.stats.ox.ac.uk/events/florence-nightingale-lecture-2023

Marloes Henriette Maathuis is a Dutch statistician known for her work on causal inference using graphical models, particularly in high-dimensional data from applications in biology and epidemiology. She is a professor of statistics at ETH Zurich in Switzerland.

Abstract

I will discuss a line of work on estimating causal effects from observational data. In the first part of the talk, I will discuss identification and estimation of causal effects when the underlying causal graph is known, using adjustment. In the second part, I will discuss what one can do when the causal graph is unknown. Throughout, examples will be used to illustrate the concepts and no background in causality is assumed.

Fri, 03 Feb 2023

14:00 - 15:00
L3

Challenges in modeling the transmission dynamics of childhood diseases

Prof Felicia Magpantay
(Dept of Math and Stats Queen’s University Kingston)
Abstract

Mathematical models of childhood diseases are often fitted using deterministic methods under the assumption of homogeneous contact rates within populations. Such models can provide good agreement with data in the absence of significant changes in population demography or transmission, such as in the case of pre-vaccine era measles. However, accurate modeling and forecasting after the start of mass vaccination has proved more challenging. This is true even in the case of measles which has a well understood natural history and a very effective vaccine. We demonstrate how the dynamics of homogeneous and age-structured models can be similar in the absence of vaccination, but diverge after vaccine roll-out. We also present some fundamental differences in deterministic and stochastic methods to fit models to data, and propose techniques to fit long term time series with imperfect covariate information. The methods we develop can be applied to many types of complex systems beyond those in disease ecology.
 

Fri, 03 Feb 2023

12:00 - 13:00
N3.12

Geometric Incarnations of (Shifted) Quantum Loop Algebras

Henry Liu
(University of Oxford)
Abstract

I'll briefly explain quantum groups and $R$-matrices and why they're the same thing. Then we'll see how to construct various $R$-matrices from Nakajima quiver varieties and some possible applications.

Thu, 02 Feb 2023
17:00
L3

Geometric Stability Theory and the Classification of Unstable Structures

Scott Mutchnik
(University of California, Berkeley)
Abstract

The equivalence of NSOP${}_1$ and NSOP${}_3$, two model-theoretic complexity properties, remains open, and both the classes NSOP${}_1$ and NSOP${}_3$ are more complex than even the simple unstable theories. And yet, it turns out that classical geometric stability theory, in particular the group configuration theorem of Hrushovski (1992), is capable of controlling classification theory on either side of the NSOP${}_1$-SOP${}_3$ dichotomy, via the expansion of stable theories by generic predicates and equivalence relations. This allows us to construct new examples of strictly NSOP${}_1$ theories. We introduce generic expansions corresponding, though universal axioms, to definable relations in the underlying theory, and discuss the existence of model companions for some of these expansions. In the case where the defining relation in the underlying theory $T$ is a ternary relation $R(x, y, z)$ coming from a surface in 3-space, we give a surprising application of the group configuration theorem to classifying the corresponding generic expansion $T^R$. Namely, when $T$ is weakly minimal and eliminates the quantifier $\exists^{\infty}$, $T^R$ is strictly NSOP${}_4$ and TP${}_2$ exactly when $R$ comes from the graph of a type-definable group operation; otherwise, depending on whether the expansion is by a generic predicate or a generic equivalence relation, it is simple or NSOP${}_1$.

Thu, 02 Feb 2023
16:00
L4

The Wiles-Lenstra-Diamond numerical criterion over imaginary quadratic fields

Jeff Manning
(Imperial College London)
Abstract

Wiles' modularity lifting theorem was the central argument in his proof of modularity of (semistable) elliptic curves over Q, and hence of Fermat's Last Theorem. His proof relied on two key components: his "patching" argument (developed in collaboration with Taylor) and his numerical isomorphism criterion.

In the time since Wiles' proof, the patching argument has been generalized extensively to prove a wide variety of modularity lifting results. In particular Calegari and Geraghty have found a way to generalize it to prove potential modularity of elliptic curves over imaginary quadratic fields (contingent on some standard conjectures). The numerical criterion on the other hand has proved far more difficult to generalize, although in situations where it can be used it can prove stronger results than what can be proven purely via patching.

In this talk I will present joint work with Srikanth Iyengar and Chandrashekhar Khare which proves a generalization of the numerical criterion to the context considered by Calegari and Geraghty (and contingent on the same conjectures). This allows us to prove integral "R=T" theorems at non-minimal levels over imaginary quadratic fields, which are inaccessible by Calegari and Geraghty's method. The results provide new evidence in favor of a torsion analog of the classical Langlands correspondence.

Thu, 02 Feb 2023

16:00 - 17:00
L6

Energy transition under scenario uncertainty: a mean-field game approach

Roxana Dumitrescu
Abstract

We study the impact of transition scenario uncertainty, and in particular, the uncertainty about future carbon price and electricity demand, on the pace of decarbonization of the electricity industry. To this end, we build a discrete time mean-field game model for the long-term dynamics of the electricity market subject to common random shocks affecting the carbon price and the electricity demand. These shocks depend on a macroeconomic scenario, which is not observed by the agents, but can be partially deduced from the frequency of the shocks. Due to this partial observation feature, the common noise is non-Markovian. We consider two classes of agents: conventional producers and renewable producers. The former choose an optimal moment to exit the market and the latter choose an optimal moment to enter the market by investing into renewable generation. The agents interact through the market price determined by a merit order mechanism with an exogenous stochastic demand. We prove the existence of Nash equilibria in the resulting mean-field game of optimal stopping with common noise, developing a novel linear programming approach for these problems. We illustrate our model by an example inspired by the UK electricity market, and show that scenario uncertainty leads to significant changes in the speed of replacement of conventional generators by renewable production.

Thu, 02 Feb 2023
15:00
L6

Higher Geometry by Examples

Chenjing Bu
Abstract

We give an introduction to the subject of higher geometry, by giving many examples of higher geometric objects, and looking at their properties. These include examples of 2-rings, 2-vector spaces, and 2-vector bundles. We show how these concepts help solve problems in ordinary geometry, as one of the many motivations of the subject. We assume no prerequisites on the subject, and the talk should be applicable to both differential and algebraic geometry.

Thu, 02 Feb 2023
14:00
Rutherford Appleton Laboratory, nr Didcot

Reducing CO2 emissions for aircraft flights through complex wind fields using three different optimal control approaches

Cathie Wells
(University of Reading)
Abstract

Whilst we all enjoy travelling to exciting and far-off locations, the current climate crisis is making flights less and less attractive. But is there anything we can do about this? By plotting courses that make best use of atmospheric data to minimise aircraft fuel burn, airlines can not only save money on fuel, but also reduce emissions, whilst not significantly increasing flight times. In each case the route between London Heathrow Airport and John F Kennedy Airport in New York is considered.  Atmospheric data is taken from a re-analysis dataset based on daily averages from 1st December, 2019 to 29th February, 2020.

Initially Pontryagin’s minimum principle is used to find time minimal routes between the airports and these are compared with flight times along the organised track structure routes prepared by the air navigation service providers NATS and NAV CANADA for each day.  Efficiency of tracks is measured using air distance, revealing that potential savings of between 0.7% and 16.4% can be made depending on the track flown. This amounts to a reduction of 6.7 million kg of CO2 across the whole winter period considered.

In a second formulation, fixed time flights are considered, thus reducing landing delays.  Here a direct method involving a reduced gradient approach is applied to find fuel minimal flight routes either by controlling just heading angle or both heading angle and airspeed. By comparing fuel burn for each of these scenarios, the importance of airspeed in the control formulation is established.  

Finally dynamic programming is applied to the problem to minimise fuel use and the resulting flight routes are compared with those actually flown by 9 different models of aircraft during the winter of 2019 to 2020. Results show that savings of 4.6% can be made flying east and 3.9% flying west, amounting to 16.6 million kg of CO2 savings in total.

Thus large reductions in fuel consumption and emissions are possible immediately, by planning time or fuel minimal trajectories, without waiting decades for incremental improvements in fuel-efficiency through technological advances.
 

Thu, 02 Feb 2023
12:00
L1

Copolymer templating from a mathematical and physical perspective

Thomas Ouldridge and Benjamin Qureshi
(Imperial College)
Further Information

 

Thomas is a Reader in Biomolecular Systems in the Department of Bioengineering at Imperial College. He leads the "Principles of Biomolecular Systems" group. 'His group probes the fundamental principles underlying complex biochemical systems through theoretical modelling, simulation and experiment.' (Taken from his website: https://www.imperial.ac.uk/principles-of-biomolecular-systems/)

You can also learn more about their work via their blog here

Abstract

Biological systems achieve their complexity by processing and exploiting information stored in molecular copolymers such as DNA, RNA and proteins. Despite the ubiquity and power of this approach in natural systems, our ability to implement similar functionality in synthetic systems is very limited. In this talk, we will first outline a new mathematical framework for analysing general models of colymerisation for infinitely long polymers. For a given model of copolymerisation, this approach allows for the extraction of key quantities such as the sequence distribution, speed of polymerisation and the rate of molecular fuel consumption without resorting to simulation. Subsequently, we will explore mechanisms that allow for reliable copying of the information stored in finite-length template copolymers, before touching on recent experimental work in which these ideas are put into practice.  

Wed, 01 Feb 2023
16:00
L6

Conjugacy languages in virtual graph products

Gemma Crowe
(Heriot-Watt University)
Abstract

Many classes of finitely generated groups have been studied using formal language theory techniques. One historical example is the study of geodesics, which gives rise to the strict growth series of a group. Properties of languages associated to groups can provide insight into the nature of the growth series.

In this talk we will introduce languages associated to conjugacy classes, rather than elements of the group. This will lead us to define an analogous series, namely the conjugacy growth series of a group, which has become a popular topic in recent years. After discussing the necessary group theoretic and language tools needed, we will focus on how these conjugacy languages behave in graph products. We will finish with some new results which look at when these properties can extend to virtual graph products.

Tue, 31 Jan 2023
15:00
L3

Finitely generated groups acting uniformly properly on hyperbolic spaces

Robert Kropholler
Abstract

An example of a uniformly proper action is the action of a group (or any of its subgroups) on its Cayley graph. A natural question appearing in a paper of Coulon and Osin, is whether the class of groups acting uniformly properly on hyperbolic spaces coincides with the class of subgroups of hyperbolic groups. In joint work with Vladimir Vankov we construct an uncountable family of finitely generated groups which act uniformly properly on hyperbolic spaces. This gives the first examples of finitely generated groups acting uniformly properly on hyperbolic spaces that are not subgroups of hyperbolic groups. We also give examples that are not virtually torsion-free.

Tue, 31 Jan 2023

14:00 - 15:00
L4

Hypercontractivity on compact Lie groups, and some applications

David Ellis
(University of Bristol)
Abstract

We present two ways of obtaining hypercontractive inequalities for low-degree functions on compact Lie groups: one based on Ricci curvature bounds, the Bakry-Emery criterion and the representation theory of compact Lie groups, and another based on a (very different) probabilistic coupling approach. As applications we make progress on a question of Gowers concerning product-free subsets of the special unitary groups, and we also obtain 'mixing' inequalities for the special unitary groups, the special orthogonal groups, the spin groups and the compact symplectic groups. We expect that the latter inequalities will have applications in physics.

Based on joint work with Guy Kindler (HUJI), Noam Lifshitz (HUJI) and Dor Minzer (MIT).

Tue, 31 Jan 2023
14:00
L6

Blocks for classical p-adic groups and the local Langlands correspondence

Robert Kurinczuk
(University of Sheffield)
Abstract

The local Langlands conjectures connect representations of p-adic groups to certain representations of Galois groups of local fields called Langlands parameters.  Recently, there has been a shift towards studying representations over more general coefficient rings and towards certain categorical enhancements of the original conjectures.  In this talk, we will focus on representations over coefficient rings with p invertible and how the corresponding category of representations of the p-adic group decomposes.  

Mon, 30 Jan 2023
16:30
L4

Improved bounds for the fundamental solution of the heat equation in exterior domains

Jose A. Cañizo
(Granada)
Abstract

We use entropy methods to show that the heat equation with Dirichlet boundary conditions on the complement of a compact set in R^d shows a self-similar behaviour much like the usual heat equation on R^d, once we account for the loss of mass due to the boundary. Giving good lower bounds for the fundamental solution on these sets is surprisingly a relatively recent result, and we find some improvements using some advances in logarithmic Sobolev inequalities. In particular, we are able to give optimal asymptotic bounds for large times for the fundamental solution with an explicit approach rate in dimensions larger than 2, and some new bounds in dimension 2.

This is a work in collaboration with Alejandro Gárriz and Fernando Quirós.

Mon, 30 Jan 2023
16:00
L6

Collisions in supersingular isogeny graphs

Wissam Ghantous
(University of Oxford)
Abstract

In this talk we will study the graph structure of supersingular isogeny graphs. These graphs are known to have very few loops and multi-edges. We formalize this idea by studying and finding bounds for their number of loops and multi-edges. We also find conditions under which these graphs are simple. To do so, we introduce a method of counting the total number of collisions (which are special endomorphisms) based on a trace formula of Gross and a known formula of Kronecker, Gierster and Hurwitz. 

The method presented in this talk can be used to study many kinds of collisions in supersingular isogeny graphs. As an application, we will see how this method was used to estimate a certain number of collisions and then show that isogeny graphs do not satisfy a certain cryptographic property that was falsely believed (and proven!) to hold.

Mon, 30 Jan 2023
15:30
L4

Profinite rigidity, 3-manifolds, and finitness properties

Martin Bridson
(University of Oxford)
Abstract

I shall begin with a brief history of the problem of trying to understand infinite groups knowing only their finite quotients. I'll then focus on 3-manifold groups, describing the prominent role that they have played in advancing our understanding of this problem in recent years. The story for 3-manifold groups involves a rich interplay of algebra, geometry, and arithmetic. I shall describe arithmetic Kleinian groups that are profinitely rigid in the absolute sense -- ie they can be distinguished from all other finitely generated, residually finite groups by their set of finite quotients. I shall then explain more recent work involving products of Seifert fibered manifolds -- here we find groups that are profinitely rigid in the class of finitely presented groups but not in the class of finitely generated groups. This is joint work with McReynolds, Reid, and Spitler.

Mon, 30 Jan 2023

15:30 - 16:30
L1

Systemic Risk in Markets with Multiple Central Counterparties

Luitgard Veraart
Abstract

We provide a framework for modelling risk and quantifying payment shortfalls in cleared markets with multiple central counterparties (CCPs). Building on the stylised fact that clearing membership is shared among CCPs, we show how this can transmit stress across markets through multiple CCPs. We provide stylised examples to lay out how such stress transmission can take place, as well as empirical evidence to illustrate that the mechanisms we study could be relevant in practice. Furthermore, we show how stress mitigation mechanisms such as variation margin gains haircutting by one CCP can have spillover effects on other CCPs. The framework can be used to enhance CCP stress-testing, which currently relies on the “Cover 2” standard requiring CCPs to be able to withstand the default of their two largest clearing members. We show that who these two clearing members are can be significantly affected by higher-order effects arising from interconnectedness through shared clearing membership. Looking at the full network of CCPs and shared clearing members is therefore important from a financial stability perspective.

This is joint work with Iñaki Aldasoro.

BIS Working Paper No 1052: https://www.bis.org/publ/work1052.pdf

Mon, 30 Jan 2023
14:15
L4

Mirror symmetry and big algebras

Tamas Hausel
(IST Austria)
Abstract

First we recall the mirror symmetry identification of the coordinate ring of certain very stable upward flows in the Hitchin system and the Kirillov algebra for the minuscule representation of the Langlands dual group via the equivariant cohomology of the cominuscule flag variety (e.g. complex Grassmannian). In turn we discuss a conjectural extension of this picture to non-very stable upward flows in terms of a big commutative subalgebra of the Kirillov algebra, which also ringifies the equivariant intersection cohomology of the corresponding affine Schubert variety.

Mon, 30 Jan 2023
13:00
L1

Double holography and Page curves in Type IIB

Christoph Uhlemann
(Oxford )
Abstract

In recent progress on the black hole information paradox, Page curves consistent with unitarity have been obtained in 2d models and in bottom-up braneworld models using the notion of double holography. In this talk we discuss top-down models realizing 4d black holes coupled to a bath in Type IIB string theory and obtain Page curves. We make the ideas behind double holography precise in these models and address causality puzzles which have arisen in the bottom-up models, leading to a refinement of their interpretation.
 

Fri, 27 Jan 2023
16:00
N3.12

K-theory

Sujay Nair
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Fri, 27 Jan 2023
16:00
L1

How to give a talk

Abstract

In this session, we will hold a panel discussion on how to best give an academic talk. Among other topics, we will focus on techniques for engaging your audience, for determining the level and technical details of the talk, and for giving both blackboard and slide presentations. The discussion will begin with a directed panel discussion before opening up to questions from the audience.

Fri, 27 Jan 2023
15:00
L2

TDA Centre Meeting

Various Speakers
(Mathematical Institute (University of Oxford))
Fri, 27 Jan 2023

14:00 - 15:00
Virtual

Digital twin models for the precision diagnosis and therapy of cancer

Prof Walter Kolch
(School of Medicine University College Dublin)
Abstract

Approaches to personalized diagnosis and treatment in oncology are heavily reliant on computer models that use molecular and clinical features to
characterize an individual patient’s disease. Most of these models use genome and/or gene expression sequences to develop classifiers of a patient’s
tumor. However, in order to fully model the behavior and therapy response of a tumor, dynamic models are desirable that can act like a Digital Twin of
the cancer patient allowing prognostic and predictive simulations of disease progression, therapy responses and development of resistance. We are
constructing Digital Twins of cancer patients in order to perform dynamic and predictive simulations that improve patient stratification and
facilitate the design of individualized therapeutic strategies. Using a hybrid approach that combines artificial intelligence / machine learning
with dynamic mechanistic modelling we are developing a computational framework for generating Digital Twins. This framework can integrate
different types of data (multiomics, clinical, and existing knowledge) and produces personalized computational models of a patient’s tumor. The
computational models are validated and refined by experimental work and in retrospective patient studies. We present some of the results of the dynamic
Digital Twins simulations in neuroblastoma. They include (i) identification on non-MYCN amplified high risk patients; (ii) prediction of individual
patients’ responses to chemotherapy; and (iii) identification of new drug targets for personalized therapy. Digital Twin models allow the dynamic and
mechanistic simulation of disease progression and therapy response. They are useful for the stratification of patients and the design of personalized
therapies.

Fri, 27 Jan 2023

12:00 - 13:00
N3.12

The Pro-Étale Topology for Representation Theorists

Jonas Antor
(University of Oxford)
Abstract

Perverse sheaves are an indispensable tool in geometric representation theory that can be used to construct representations and compute composition multiplicities. These ‘sheaves’ live in a certain $\ell$-adic derived category. In this talk we will discuss a beautiful construction of this category based on the pro-étale topology and explore some applications in representation theory.

Thu, 26 Jan 2023
17:00
L3

Decidability of the class of all the rings $\mathbb{Z}/m\mathbb{Z}$: A Problem of Ax

Jamshid Derakhshan
(University of Oxford)
Abstract

In his pioneering and celebrated 1968 paper on the elementary theory of finite fields Ax asked if the theory of the class of all the finite rings $\mathbb{Z}/m\mathbb{Z}$, for all $m>1$, is decidable. In that paper, Ax proved that the existential theory of this class is decidable via his result that the theory of the class of all the rings $\mathbb{Z}/p^n\mathbb{Z}$ (with $p$ and $n$ varying) is decidable. This used Chebotarev’s Density Theorem and model theory of pseudo-finite fields.

I will talk about a recent solution jointly with Angus Macintyre of Ax’s Problem using model theory of the ring of adeles of the rational numbers.

Thu, 26 Jan 2023
16:00
L5

Distribution of genus numbers of abelian number fields

Rachel Newton
(King's College London)
Abstract

Let K be a number field and let L/K be an abelian extension. The genus field of L/K is the largest extension of L which is unramified at all places of L and abelian as an extension of K. The genus group is its Galois group over L, which is a quotient of the class group of L, and the genus number is the size of the genus group. We study the quantitative behaviour of genus numbers as one varies over abelian extensions L/K with fixed Galois group. We give an asymptotic formula for the average value of the genus number and show that any given genus number appears only 0% of the time. This is joint work with Christopher Frei and Daniel Loughran.

Thu, 26 Jan 2023
14:00
L3

Learning State-Space Models of Dynamical Systems from Data

Peter Benner
(MPI Magdeburg)
Abstract

Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions. Building models describing the dynamics of complex processes (e.g., weather dynamics, reactive flows, brain/neural activity, etc.) using empirical knowledge or first principles is frequently onerous or infeasible. Therefore, system identification has evolved as a scientific discipline for this task since the 1960ies. Due to the obvious similarity of approximating unknown functions by artificial neural networks, system identification was an early adopter of machine learning methods. In the first part of the talk, we will review the development in this area until now.

For complex systems, identifying the full dynamics using system identification may still lead to high-dimensional models. For engineering tasks like optimization and control synthesis as well as in the context of digital twins, such learned models might still be computationally too challenging in the aforementioned multi-query scenarios. Therefore, it is desirable to identify compact approximate models from the available data. In the second part of this talk, we will therefore exploit that the dynamics of high-fidelity models often evolve in lowdimensional manifolds. We will discuss approaches learning representations of these lowdimensional manifolds using several ideas, including the lifting principle and autoencoders. In particular, we will focus on learning state-space representations that can be used in classical tools for computational engineering. Several numerical examples will illustrate the performance and limitations of the suggested approaches.

Thu, 26 Jan 2023
12:00
L1

From network dynamics to graph-based learning

Mauricio Barahona
(Department of Mathematics, Imperial College London)
Further Information

Prof. Mauricio Barahona is Chair in Biomathematics and Director of the EPSRC Centre for Mathematics of Precision Healthcare at Imperial. He obtained his PhD at MIT, under Steve Strogatz, followed by a MEC Fellowship at Stanford and the Edison International Fellowship at Caltech. His research is in the development of mathematical and computational methods for the analysis of biological, social and engineering systems using ideas from graph theory, dynamical systems, stochastic processes, optimisation and machine learning.

Abstract

This talk will explore a series of topics and example applications at the interface of graph theory and dynamics, from synchronization and diffusion dynamics on networks, to graph-based data clustering, to graph convolutional neural networks. The underlying links are provided by concepts in spectral graph theory.

Wed, 25 Jan 2023
16:00
L6

Group cohomology, BNS invariants and subgroup separability

Monika Kudlinska
(University of Oxford)
Abstract

Group cohomology is a powerful tool which has found many applications in modern group theory. It can be calculated and interpreted through geometric, algebraic and topological means, and as such it encodes the relationships between these different aspects of infinite groups. The aim of this talk is to introduce a circle of ideas which link group cohomology with the theory of BNS invariants, and the property of being subgroup separable. No prior knowledge of any of these topics will be assumed.

Tue, 24 Jan 2023
16:00
C3

Braided tensor categories as invariants of von Neumann algebras

Corey Jones
(North Carolina State University)
Abstract

In the operator algebraic approach to quantum field theory, the DHR category is a braided tensor category describing topological point defects of a theory with at least 1 (+1) dimensions. A single von Neumann algebra with no extra structure can be thought of as a 0 (+1) dimensional quantum field theory. In this case, we would not expect a braided tensor category of point defects since there are not enough dimensions to implement a braiding. We show, however, that one can think of central sequence algebras as operators localized ``at infinity", and apply the DHR recipe to obtain a braided tensor category of bimodules of a von Neumann algebra M, which is a Morita invariant. When M is a II_1 factor, the braided subcategory of automorphic objects recovers Connes' chi(M) and Jones' kappa(M). We compute this for II_1 factors arising naturally from subfactor theory and show that any Drinfeld center of a fusion category can be realized. Based on joint work with Quan Chen and Dave Penneys.

Tue, 24 Jan 2023
15:00

Computing high-dimensional group cohomology via duality

Benjamin Brück
Abstract

In recent years, duality approaches have yielded new results about the high-dimensional cohomology of several groups and moduli spaces, such as $\operatorname{SL}_n(\mathbb{Z})$ and $\mathcal{M}_g$. I will explain the general strategy of these approaches and survey results that have been obtained so far. To give an example, I will first explain how Borel-Serre duality can be used to show that the rational cohomology of $\operatorname{SL}_n(\mathbb{Z})$ vanishes near its virtual cohomological dimension. This is based on joint work with Miller-Patzt-Sroka-Wilson and builds on results by Church-Farb-Putman. I will then put this into a more general context by giving an overview of analogous results for mapping class groups of surfaces, automorphism groups of free groups and further arithmetic groups such as $\operatorname{SL}_n(\mathcal{O}_K)$ and $\operatorname{Sp}_{2n}(\mathbb{Z})$.

Tue, 24 Jan 2023
14:30
L3

Smoothed analysis of sparse Johnson-Lindenstrauss embeddings

Zhen Shao
Abstract

We investigate the theoretical properties of subsampling and hashing as tools for approximate Euclidean norm-preserving embeddings for vectors with (unknown) additive Gaussian noises. Such embeddings are called Johnson-Lindenstrauss embeddings due to their celebrated lemma. Previous work shows that as sparse embeddings, if a comparable embedding dimension to the Gaussian matrices is required, the success of subsampling and hashing closely depends on the $l_\infty$ to $l_2$ ratios of the vectors to be mapped. This paper shows that the presence of noise removes such constrain in high-dimensions; in other words, sparse embeddings such as subsampling and hashing with comparable embedding dimensions to dense embeddings have similar norm-preserving dimensionality-reduction properties, regardless of the $l_\infty$ to $l_2$ ratios of the vectors to be mapped. The key idea in our result is that the noise should be treated as information to be exploited, not simply a nuisance to be removed. Numerical illustrations show better performances of sparse embeddings in the presence of noise.

Tue, 24 Jan 2023

14:00 - 15:00
L4

Asymmetric graph removal

Yuval Wigderson
(Tel Aviv University)
Abstract

The triangle removal lemma of Ruzsa and Szemerédi is a fundamental result in extremal graph theory; very roughly speaking, it says that if a graph is "far" from triangle-free, then it contains "many" triangles. Despite decades of research, there is still a lot that we don't understand about this simple statement; for example, our understanding of the quantitative dependencies is very poor.


In this talk, I will discuss asymmetric versions of the triangle removal lemma, where in some cases we can get almost optimal quantitative bounds. The proofs use a mix of ideas coming from graph theory, number theory, probabilistic combinatorics, and Ramsey theory.


Based on joint work with Lior Gishboliner and Asaf Shapira.

Tue, 24 Jan 2023
14:00
L6

Highest weight theory and wall-crossing functors for reduced enveloping algebras

Matthew Westaway
(University of Birmingham)
Abstract

In the last few years, major advances have been made in our understanding of the representation theory of reductive algebraic groups over algebraically closed fields of positive characteristic. Four key tools which are central to this progress are highest weight theory, reduction to the principal block, wall-crossing functors, and tilting modules. When considering instead the representation theory of the Lie algebras of these algebraic groups, more subtleties arise. If we look at those modules whose p-character is in so-called standard Levi form we are able to recover the four tools mentioned above, but they have been less well-studied in this setting. In this talk, we will explore the similarities and differences which arise when employing these tools for the Lie algebras rather than the algebraic groups. This research is funded by a research fellowship from the Royal Commission for the Exhibition of 1851.

Tue, 24 Jan 2023
14:00
L3

Compatible finite elements for terrain following meshes

Karina Kowalczyk
Abstract

In this talk we are presenting a new approach for compatible finite element discretisations for atmospheric flows on a terrain following mesh. In classical compatible finite element discretisations, the H(div)-velocity space involves the application of Piola transforms when mapping from a reference element to the physical element in order to guarantee normal continuity. In the case of a terrain following mesh, this causes an undesired coupling of the horizontal and vertical velocity components. We are proposing a new finite element space, that drops the Piola transform. For solving the equations we introduce a hybridisable formulation with trace variables supported on horizontal cell faces in order to enforce the normal continuity of the velocity in the solution. Alongside the discrete formulation for various fluid equations we discuss solver approaches that are compatible with them and present our latest numerical results.

Tue, 24 Jan 2023
12:30
C3

Onsager's conjecture for energy conservation

Samuel Charles
Abstract

In this talk I will discuss Onsager's conjecture for energy conservation. Moreover, in 1949 Onsager conjectured that weak solutions to the incompressible Euler equations, that were Hölder continuous with Hölder exponent greater than 1/3, conserved kinetic energy. Onsager also conjectured that there were weak solutions that were Hölder continuous with Hölder exponent less than 1/3 that didn't conserve kinetic energy. I will discuss the results regarding the former, focusing mainly on the case where the spacial domain is bounded with C^2 boundary, as proved by Bardos and Titi.

Mon, 23 Jan 2023
16:30
L4

Analysis of multi-phase PDE models: from fluids to crowds

Ewelina Zatorska
(Imperial College)
Abstract

This talk will be devoted to our recent developments in the analysis of emerging models for complex flows. I will start from presenting a general PDE system describing two-fluid flows, for which we prove existence of global in time weak solutions for arbitrary large initial data. I will explain where the famous approach of Lions developed for the compressible Navier-Stokes equations fails and how to use a more direct, weighted Kolmogorov criterion to prove compactness of approximating sequences of solutions. Through a formal limit, I will link the two-fluid model to the constrained two-phase models. Applications of such models include modelling of granular flows, crowd motion, or shallow water flow through a channel. The last part of my talk will focus on the rigorous derivation of these models from the compressible Navier-Stokes equations via the vanishing singular pressure or viscosity limit.

Mon, 23 Jan 2023
16:00
L6

Sums of arithmetic functions over F_q[T] and non-unitary distributions (Joint junior/senior number theory seminar)

Vivian Kuperberg
(Tel Aviv University)
Abstract

In 2018, Keating, Rodgers, Roditty-Gershon and Rudnick conjectured that the variance of sums of the divisor
function in short intervals is described by a certain piecewise polynomial coming from a unitary matrix integral. That is
to say, this conjecture ties a straightforward arithmetic problem to random matrix theory. They supported their
conjecture by analogous results in the setting of polynomials over a finite field rather than in the integer setting. In this
talk, we'll discuss arithmetic problems over F_q[T] and their connections to matrix integrals, focusing on variations on
the divisor function problem with symplectic and orthogonal distributions. Joint work with Matilde Lalín.

Mon, 23 Jan 2023
16:00
L6

Sums of arithmetic functions over F_q[T] and non-unitary distributions

Vivian Kuperberg
(Tel Aviv University)
Abstract

In 2018, Keating, Rodgers, Roditty-Gershon and Rudnick conjectured that the variance of sums of the divisor function in short intervals is described by a certain piecewise polynomial coming from a unitary matrix integral. That is to say, this conjecture ties a straightforward arithmetic problem to random matrix theory. They supported their conjecture by analogous results in the setting of polynomials over a finite field rather than in the integer setting. In this talk, we'll discuss arithmetic problems over F_q[T] and their connections to matrix integrals, focusing on variations on the divisor function problem with symplectic and orthogonal distributions. Joint work with Matilde Lalín.

Mon, 23 Jan 2023
15:30
L4

Unramified correspondence and virtual homology of mapping class groups

Vladmir Markovic (University of Oxford)
Abstract

I shall discuss my recent work showing that the Bogomolov-Tschinkel universality conjecture holds if and only if the mapping class groups of a punctured surface is large. One consequence of this result is that all genus 2 surface-by-surface (and all genus 2 surface-by-free) groups are virtually algebraically fibered. Moreover, I will explain why simple curve homology does not always generate homology of finite covers of closed surface. I will also mention my work with O. Tosic regarding the Putman-Wieland conjecture, and explain the partial solution to the Prill's problem about algebraic curves.

 

Mon, 23 Jan 2023

15:30 - 16:30
L1

Particle exchange models with several conservation laws

Patrícia Gonçalves
Abstract

In this talk I will present an exclusion process with different types of particles: A, B and C. This last type can be understood as holes. Two scaling limits will be discussed: hydrodynamic limits in the boundary driven setting; and equilibrium fluctuations for an evolution on the torus. In the later case, we distinguish several cases, that depend on the choice of the jump rates, for which we get in the limit either the stochastic Burgers equation or the Ornstein-Uhlenbeck equation. These results match with predictions from non-linear fluctuating hydrodynamics. 
(Joint work with G. Cannizzaro, A. Occelli, R. Misturini).

Mon, 23 Jan 2023
14:15
L4

Compactified Universal Jacobians over $\overline{\mathcal{M}}_{g,n}$ via GIT

George Cooper
(Oxford University)
Abstract

Associated to any smooth projective curve C is its degree d Jacobian variety, parametrising isomorphism classes of degree d line bundles on C. Letting the curve vary as well, one is led to the universal Jacobian stack. This stack admits several compactifications over the stack of marked stable curves $\overline{\mathcal{M}}_{g,n}$, depending on the choice of a stability condition. In this talk I will introduce these compactified universal Jacobians, and explain how their moduli spaces can be constructed using Geometric Invariant Theory (GIT). This talk is based on arXiv:2210.11457.

Mon, 23 Jan 2023

14:00 - 15:00
L6

Deep low-rank transport maps for Bayesian inverse problems

Sergey Dolgov
(University of Bath)
Abstract

Characterising intractable high-dimensional random variables is one of the fundamental challenges in stochastic computation. We develop a deep transport map that is suitable for sampling concentrated distributions defined by an unnormalised density function. We approximate the target distribution as the push-forward of a reference distribution under a composition of order-preserving transformations, in which each transformation is formed by a tensor train decomposition. The use of composition of maps moving along a sequence of bridging densities alleviates the difficulty of directly approximating concentrated density functions. We propose two bridging strategies suitable for wide use: tempering the target density with a sequence of increasing powers, and smoothing of an indicator function with a sequence of sigmoids of increasing scales. The latter strategy opens the door to efficient computation of rare event probabilities in Bayesian inference problems.

Numerical experiments on problems constrained by differential equations show little to no increase in the computational complexity with the event probability going to zero, and allow to compute hitherto unattainable estimates of rare event probabilities for complex, high-dimensional posterior densities.
 

Mon, 23 Jan 2023
13:00
L1

Higgsing SCFTs in d=3,4,5,6

Zhenghao Zhong
(Oxford )
Abstract

We study supersymmetric gauge theories with 8 supercharges in d=3,4,5,6. For these theories, one can perform Higgsings by turning on VEVs of scalar fields. However, this process can often be difficult when dealing with superconformal field theories (SCFTs) where the Lagrangian is often not known. Using techniques of magnetic quivers and a new algorithm we call "Inverted Quiver Subtraction", we show how one can easily obtain the SCFT(s) after Higgsing. This technique can be equally well applied to SCFTs in d=3,4,5,6. 

Fri, 20 Jan 2023
16:00
L1

Departmental Colloquium

Professor James Maynard
(Mathematical Institute (University of Oxford))
Further Information

Title: “Prime numbers: Techniques, results and questions”

Abstract

The basic question in prime number theory is to try to understand the number of primes in some interesting set of integers. Unfortunately many of the most basic and natural examples are famous open problems which are over 100 years old!

We aim to give an accessible survey of (a selection of) the main results and techniques in prime number theory. In particular we highlight progress on some of these famous problems, as well as a selection of our favourite problems for future progress.

Fri, 20 Jan 2023

16:00 - 17:00
L1

Prime numbers: Techniques, results and questions

James Maynard
(Oxford University )
Abstract

The basic question in prime number theory is to try to understand the number of primes in some interesting set of integers. Unfortunately many of the most basic and natural examples are famous open problems which are over 100 years old!

We aim to give an accessible survey of (a selection of) the main results and techniques in prime number theory. In particular we highlight progress on some of these famous problems, as well as a selection of our favourite problems for future progress.