The social dynamics of group interactions
Abstract
Complex networks have become the main paradigm for modeling the dynamics of interacting systems. However, networks are intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by interactions involving groups of three or more units. In this talk, I will consider social systems as a natural testing ground for higher-order network approaches (hypergraphs and simplicial complexes). I will briefly introduce models of social contagion and norm evolution on hypergraphs to show how the inclusion of higher-order mechanisms can lead to the emergence of novel phenomena such as discontinuous transitions and critical mass effects. I will then present some recent results on the role that structural features play on the emergent dynamics, and introduce a measure of hyper-coreness to characterize the centrality of nodes and inform seeding strategies. Finally, I will delve into the microscopic dynamics of empirical higher-order structures. I will study the mechanisms governing their temporal dynamics both at the node and group level, characterizing how individuals navigate groups and how groups form and dismantle. I will conclude by proposing a dynamical hypergraph model that closely reproduces the empirical observations.