Tue, 07 Nov 2023

14:30 - 15:00
VC

A Finite-Volume Scheme for Fractional Diffusion on Bounded Domains

Stefano Fronzoni
(Mathematical Institute (University of Oxford))
Abstract

Diffusion is one of the most common phenomenon in natural sciences and large part of applied mathematics have been interested in the tools to model it. Trying to study different types of diffusions, the mathematical ways to describe them and the numerical methods to simulate them is an appealing challenge, giving a wide range of applications. The aim of our work is the design of a finite-volume numerical scheme to model non-local diffusion given by the fractional Laplacian and to build numerical solutions for the Lévy-Fokker-Planck equation that involves it. Numerical methods for fractional diffusion have been indeed developed during the last few years and large part of the literature has been focused on finite element methods. Few results have been rather proposed for different techniques such as finite volumes.

 
We propose a new fractional Laplacian for bounded domains, which is expressed as a conservation law. This new approach is therefore particularly suitable for a finite volumes scheme and allows us also to prescribe no-flux boundary conditions explicitly. We enforce our new definition with a well-posedness theory for some cases to then capture with a good level of approximation the action of fractional Laplacian and its anomalous diffusion effect with our numerical scheme. The numerical solutions we get for the Lévy-Fokker-Planck equation resemble in fact the known analytical predictions and allow us to numerically explore properties of this equation and compute stationary states and long-time asymptotics.

Tue, 07 Nov 2023

14:00 - 15:00
L5

A solution functor for D-cap-modules

Finn Wiersig
(University of Oxford)
Abstract

The theory of D-modules has found remarkable applications in various mathematical areas, for example, the representation theory of complex semi-simple Lie algebras. Two pivotal theorems in this field are the Beilinson-Bernstein Localisation Theorem and the Riemann-Hilbert Correspondence. This talk will explore a p-adic analogue. Ardakov-Wadsley introduced the sheaf D-cap of infinite order differential operators on a given smooth rigid-analytic variety to develop a p-adic counterpart for the Beilinson-Bernstein localisation. However, the classical approach to the Riemann-Hilbert Correspondence does not apply in the p-adic context. I will present an alternative approach, introducing a solution functor for D-cap-modules using new methods from p-adic Hodge theory.

Tue, 07 Nov 2023
13:00
L1

3D gravity, Virasoro TQFT, and ensembles of approximate CFT’s

Gabriel Wong
(Oxford)
Abstract

Recent progress in AdS/CFT has provided a good understanding of how the bulk spacetime is encoded in the entanglement structure of the boundary CFT. However, little is known about how spacetime emerges directly from the bulk quantum theory. We address this question in AdS3 pure gravity, which we formulate as a topological quantum field theory. We explain how gravitational entropy can be viewed as bulk entanglement entropy of gravitational edge modes.  These edge modes transform under a quantum group symmetry. This suggests an effective description of bulk microstates in terms of collective, anyonic degrees of freedom whose entanglement leads to the emergence of the bulk spacetime.  Time permitting we will discuss a proposal for how our bulk TQFT arises from an ensemble of approximate CFT’s, generalizing the relation between JT gravity and random matrix ensemble.

Tue, 07 Nov 2023
11:00
Lecture Room 4, Mathematical Institute

Rough super Brownian motion and its properties

Ruhong Jin
(Mathematical Insitute, Oxford)
Abstract

Following Rosati and Perkowski’s work on constructing the first version of a rough super Brownian motion, we generalize the rough super Brownian motion to the case when the branching mechanism has infinite variance. In both case, we can prove the compact support properties and the exponential persistence.

Mon, 06 Nov 2023

16:30 - 17:30
L3

On Hookean models of dilute polymeric fluids.

Tomasz Dębiec
(University of Warsaw)
Abstract

We consider the Hookean dumbbell model, a system of nonlinear PDEs arising in the kinetic theory of homogeneous dilute polymeric fluids. It consists of the unsteady incompressible Navier-Stokes equations in a bounded Lipschitz domain, coupled to a Fokker-Planck-type parabolic equation with a centre-of-mass diffusion term, for the probability density function, modelling the evolution of the configuration of noninteracting polymer molecules in the solvent.

The micro-macro interaction is reflected by the presence of a drag term in the Fokker-Planck equation and the divergence of a polymeric extra-stress tensor in the Navier-Stokes balance of momentum equation. In a simplified case where the drag term is corotational, we prove global existence of weak solutions and discuss some of their properties: we use the relative energy method to deduce a weak-strong uniqueness type result, and derive the macroscopic closure of the kinetic model: a corotational Oldroyd-B model with stress-diffusion.

In the general noncorotational case, we consider “generalised dissipative solutions” — a relaxation of the usual notion of weak solution, allowing for the presence of a, possibly nonzero, defect measure in the momentum equation, which accounts for the lack of compactness in the polymeric extra-stress tensor. Joint work with Endre Suli (Oxford).

Mon, 06 Nov 2023
16:00
L1

A Basic Problem in Analytic Number Theory

George Robinson
(University of Oxford)
Abstract

I will discuss a basic problem in analytic number theory which has appeared recently in my work. This will be a gentle introduction to the Gauss circle problem, hopefully with a discussion of some extensions and applications to understanding L-functions.

Mon, 06 Nov 2023
15:30
L4

Understanding infinite groups via their actions on Banach spaces

Cornelia Drutu
((Oxford University) )
Abstract

One way of studying infinite groups is by analysing
 their actions on classes of interesting spaces. This is the case
 for Kazhdan's property (T) and for Haagerup's property (also called a-T-menability),
 formulated in terms of actions on Hilbert spaces and relevant in many areas
(e.g. for the Baum-Connes conjectures, in combinatorics, for the study of expander graphs, in ergodic theory, etc.)
 
Recently, these properties have been reformulated for actions on Banach spaces,
with very interesting results. This talk will overview some of these reformulations
 and their applications. Part of the talk is on joint work with Ashot Minasyan and Mikael de la Salle, and with John Mackay.
 

Mon, 06 Nov 2023
15:30
Lecture Theatre 3, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Spontaneous oscillations in a pure excitatory mean field networks of neurons

Etienne Tanre
(Université Côte d’Azur, Inria)
Abstract

We consider a model of network of interacting  neurons based on jump processes. Briefly, the membrane potential $V^i_t$ of each individual neuron evolves according to a one-dimensional ODE. Neuron $i$ spikes at rate which only depends on its membrane potential, $f(V^i_t)$. After a spike, $V^i_t$ is reset to a fixed value $V^{\mathrm{rest}}$. Simultaneously, the membrane potentials of any (post-synaptic) neuron $j$ connected to the neuron $i$ receives a kick of value $J^{i,j}$.

We study the limit (mean-field) equation obtained where the number of neurons goes to infinity. In this talk, we describe the long time behaviour of the solution. Depending on the intensity of the interactions, we observe convergence of the distribution to a unique invariant measure (small interactions) or we characterize the occurrence of spontaneous oscillations for  interactions in the neighbourhood of critical values.

Mon, 06 Nov 2023
14:15
L4

The New $\mu$-Invariants: Infinite-Dimensional Morse Indices and New Invariants of $G_2$-Manifolds

Laurence Mayther
(Cambridge)
Abstract

There are two main methods of constructing compact manifolds with holonomy $G_2$, viz. resolution of singularities (first applied by Joyce) and twisted connect sum (first applied by Kovalev).  In the second case, there is a known invariant (the $\overline{\nu}$-invariant, introduced by Crowley–Goette–Nordström) which can, in many cases, be used to distinguish between different examples.  This invariant, however, has limitations; in particular, it cannot be computed on the $G_2$-manifolds constructed by resolution of singularities.

 

In this talk, I shall begin by discussing the notion of a $G_2$-manifold and the $\overline{\nu}$-invariant and its limitations.  In the context of this, I shall then introduce two new invariants of $G_2$-manifolds, termed $\mu$-invariants, and explain why these promise to overcome these limitations, in particular being well-suited to, and computable on, Joyce's examples of $G_2$-manifolds.  These invariants are related to $\eta$- and $\zeta$-invariants and should be regarded as the Morse indices of a $G_2$-manifold when it is viewed as a critical point of certain Hitchin functionals.  Time permitting, I shall explain how to prove a closed formula for the invariants on the orbifolds used in Joyce's construction, using Epstein $\zeta$-functions.

Mon, 06 Nov 2023

14:00 - 15:00
Lecture Room 6
Mon, 06 Nov 2023

13:00 - 14:00
N3.12

Mathematrix: Mentoring Discussion

Abstract

We will be joined by people with mentoring experience to discuss the importance of both having and being a good mentor.

Fri, 03 Nov 2023
16:00
L1

Departmental Colloquium (Alicia Dickenstein) - Algebraic geometry tools in systems biology

Alicia Dickenstein
Further Information

Alicia Dickenstein is an Argentine mathematician known for her work on algebraic geometry, particularly toric geometry, tropical geometry, and their applications to biological systems.

Abstract

In recent years, methods and concepts of algebraic geometry, particularly those of real and computational algebraic geometry, have been used in many applied domains. In this talk, aimed at a broad audience, I will review applications to molecular biology. The goal is to analyze standard models in systems biology to predict dynamic behavior in regions of parameter space without the need for simulations. I will also mention some challenges in the field of real algebraic geometry that arise from these applications.

Fri, 03 Nov 2023
16:00
L1

Algebraic geometry tools in systems biology

Alicia Dickenstein
(University of Buenos Aires)
Abstract

In recent years, methods and concepts of algebraic geometry, particularly those of real and computational algebraic geometry, have been used in many applied domains. In this talk, aimed at a broad audience, I will review applications to molecular biology. The goal is to analyze standard models in systems biology to predict dynamic behavior in regions of parameter space without the need for simulations. I will also mention some challenges in the field of real algebraic geometry that arise from these applications.

Fri, 03 Nov 2023

15:00 - 16:00
L5

The Expected Betti Numbers of Preferential Attachment Clique Complexes

Chunyin Siu
(Cornell)
Further Information

Chunyin Siu (Alex) is a PhD candidate at Cornell University at the Center for Applied Mathematics, and is a Croucher scholar (2019) and a Youde scholar (2018).

His primary research interests lie in the intersection of topological data analysis, network analysis, topological statistics and computational geometry. He is advised by Prof. Gennady Samorodnitsky. Before coming to Cornell University, he was a MPhil. student advised by Prof. Ronald (Lokming) Lui at the Chinese University of Hong Kong.

Abstract

The preferential attachment model is a natural and popular random graph model for a growing network that contains very well-connected ``hubs''. Despite intense interest in the higher-order connectivity of these networks, their Betti numbers at higher dimensions have been largely unexplored.

In this talk, after a brief survey on random topology, we study the clique complexes of preferential attachment graphs, and we prove the asymptotics of the expected Betti numbers. If time allows, we will briefly discuss their homotopy connectedness as well. This is joint work with Gennady Samorodnitsky, Christina Lee Yu and Rongyi He, and it is based on the preprint https://arxiv.org/abs/2305.11259

Fri, 03 Nov 2023

14:00 - 15:00
L3

Leader, follower, and cheater in collective cancer invasion

Professor Yi Jiang
(College of Arts and Science Georgia State University)
Abstract

A major reason for the failure of cancer treatment and disease progression is the heterogeneous composition of tumor cells at the genetic, epigenetic, and phenotypic levels. Despite extensive efforts to characterize the makeup of individual cells, there is still much to be learned about the interactions between heterogeneous cancer cells and between cancer cells and the microenvironment in the context of cancer invasion. Clinical studies and in vivo models have shown that cancer invasion predominantly occurs through collective invasion packs, which invade more aggressively and result in worse outcomes. In vitro experiments on non-small cell lung cancer spheroids have demonstrated that the invasion packs consist of leaders and followers who engage in mutualistic social interactions during collective invasion. Many fundamental questions remain unanswered: What is the division of labor within the heterogeneous invasion pack? How does the leader phenotype emerge? Are the phenotypes plastic? What's the role of the individual "cheaters"? How does the invasion pack interact with the stroma? Can the social interaction network be exploited to devise novel treatment strategies? I will discuss recent modeling efforts to address these questions and hope to convince you that identifying and perturbing the "weak links" within the social interaction network can disrupt collective invasion and potentially prevent the malignant progression of cancer. 

Fri, 03 Nov 2023
12:00
L3

Inversions, Shadows, and Extrapolate Dictionaries in CCFT

Sabrina Pasterski
(Perimeter Institute)
Abstract

The Celestial Holography program encompasses recent efforts to understand the flat space hologram in terms of a CFT living on the celestial sphere. Here we have fun relating various extrapolate dictionaries in CCFT and examining tools we can apply when perturbing around a 4D CFT in the bulk.

 

 

Fri, 03 Nov 2023

12:00 - 13:00

Quantum cluster algebras and dual canonical bases

Liam Riordan
(University of Bath)
Abstract

Cluster algebras and their quantum counterparts were invented in the early 2000s in an attempt to construct elements of dual canonical bases. This turned out to be a harder goal than first realised. In this talk I will aim to give an introduction and overview of the theory and display the wide range of interesting maths which has gone into making steps in this area. I will try to assume as little possible prior knowledge and instead focus on interesting questions which remain open in this area.

Thu, 02 Nov 2023

17:00 - 18:00
L3

A group action version of the Elekes-Szabó theorem

Martin Bays (Oxford)
Abstract

I will present a generalisation of the Elekes-Szabó result, that any ternary algebraic relation in characteristic 0 having large intersections with (certain) finite grids must essentially be the graph of a group law, to a version where one obtains an algebraic group action. In the end the conclusion will be similar, but with weaker assumptions. This is recent work with Tingxiang Zou.

Thu, 02 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

An offline learning approach to propagator models

Dr Yufei Zhang
(Department of Mathematics, Imperial College London)
Abstract

We consider an offline learning problem for an agent who first estimates an unknown price impact kernel from a static dataset, and then designs strategies to liquidate a risky asset while creating transient price impact. We propose a novel approach for a nonparametric estimation of the propagator from a dataset containing correlated price trajectories, trading signals and metaorders. We quantify the accuracy of the estimated propagator using a metric which depends explicitly on the dataset. We show that a trader who tries to minimise her execution costs by using a greedy strategy purely based on the estimated propagator will encounter suboptimality due to spurious correlation between the trading strategy and the estimator. By adopting an offline reinforcement learning approach, we introduce a pessimistic loss functional taking the uncertainty of the estimated propagator into account, with an optimiser which eliminates the spurious correlation, and derive an asymptotically optimal bound on the execution costs even without precise information on the true propagator. Numerical experiments are included to demonstrate the effectiveness of the proposed propagator estimator and the pessimistic trading strategy.

Thu, 02 Nov 2023
16:00
L5

Partition regularity of Pythagorean pairs

Joel Moreira
(University of Warwick)
Abstract

Is there a partition of the natural numbers into finitely many pieces, none of which contains a Pythagorean triple (i.e. a solution to the equation x2+y2=z2)? This is one of the simplest questions in arithmetic Ramsey theory which is still open. I will present a recent partial result, showing that in any finite partition of the natural numbers there are two numbers x,y in the same cell of the partition, such that x2+y2=z2 for some integer z which may be in a different cell. 

The proof consists, after some initial maneuvers inspired by ergodic theory, in controlling the behavior of completely multiplicative functions along certain quadratic polynomials. Considering separately aperiodic and "pretentious" functions, the last major ingredient is a concentration estimate for functions in the latter class when evaluated along sums of two squares.

The talk is based on joint work with Frantzikinakis and Klurman.

Thu, 02 Nov 2023
15:00
L4

Generalising fat bundles and positive curvature

Alberto Rodriguez Vazquez
(KU Leuven)
Abstract

Alan Weinstein, introduced the concept of "fat bundle" as a tool to understand when the total space of a fiber bundle with totally geodesic fibers allows a metric with positive sectional curvature. 

In recent times, certain weaker notions than the condition of having a metric with positive sectional curvature have been studied due to the apparent scarcity of spaces that meet this condition. Positive kth-intermediate Ricci curvature (Rick > 0) on a Riemannian manifold Mn is a condition that bridges the gap between positive sectional curvature and positive Ricci curvature. Indeed, when k = 1, this condition corresponds to positive sectional curvature, and when k = n−1, it corresponds to positive Ricci curvature. 

In this talk, I will discuss an ongoing project with Miguel Domínguez Vázquez, David González-Álvaro, and Jason DeVito, which aims to create new examples of compact Riemannian manifolds with Ric2 > 0. We achieve this by employing a certain generalisation of the "fat bundle" concept.

Thu, 02 Nov 2023
14:00
Lecture Room 3

Recent Developments in the Numerical Solution of PDE-Constrained Optimization Problems

John Pearson
(Edinburgh University)
Abstract

Optimization problems subject to PDE constraints constitute a mathematical tool that can be applied to a wide range of scientific processes, including fluid flow control, medical imaging, option pricing, biological and chemical processes, and electromagnetic inverse problems, to name a few. These problems involve minimizing some function arising from a particular physical objective, while at the same time obeying a system of PDEs which describe the process. It is necessary to obtain accurate solutions to such problems within a reasonable CPU time, in particular for time-dependent problems, for which the “all-at-once” solution can lead to extremely large linear systems.

 

In this talk we consider iterative methods, in particular Krylov subspace methods, to solve such systems, accelerated by fast and robust preconditioning strategies. In particular, we will survey several new developments, including block preconditioners for fluid flow control problems, a circulant preconditioning framework for solving certain optimization problems constrained by fractional differential equations, and multiple saddle-point preconditioners for block tridiagonal linear systems. We will illustrate the benefit of using these new approaches through a range of numerical experiments.

 

This talk is based on work with Santolo Leveque (Scuola Normale Superiore, Pisa), Spyros Pougkakiotis (Yale University), Jacek Gondzio (University of Edinburgh), and Andreas Potschka (TU Clausthal).

Thu, 02 Nov 2023

12:00 - 13:00
L3

Coarsening of thin films with weak condensation

Hangjie Ji
(North Carolina State University)
Abstract

A lubrication model can be used to describe the dynamics of a weakly volatile viscous fluid layer on a hydrophobic substrate. Thin layers of the fluid are unstable to perturbations and break up into slowly evolving interacting droplets. In this talk, we will present a reduced-order dynamical system derived from the lubrication model based on the nearest-neighbour droplet interactions in the weak condensation limit. Dynamics for periodic arrays of identical drops and pairwise droplet interactions are investigated which provide insights to the coarsening dynamics of a large droplet system. Weak condensation is shown to be a singular perturbation, fundamentally changing the long-time coarsening dynamics for the droplets and the overall mass of the fluid in two additional regimes of long-time dynamics. This is joint work with Thomas Witelski.

Thu, 02 Nov 2023

12:00 - 13:00
L1

Model and data fusion: physics-driven learning in cancer research

Pasquale Ciarletta
(MOX Laboratory, Politecnico di Milano, Italy)
Abstract

The key role of physical and mechanical interactions in cancer emerges from a very large variety of data sources and methods - from genomics to bioimaging, from proteomics to clinical records. Thus, learning physics-driven relational information is crucial to characterize its progression at different scales.

In this talk I will discuss how mathematical and computational tools allow for learning  and better understanding of  the mechano-biology of cancer thanks to the integration of  patient-specific data and physics-based models. I will present a few applications developed in the last decade in which the development of  digital twins,  empowered by ad-hoc learning tools,  allows us to test new hypotheses,  to assess the model predictions against biological and clinical data, and to aid decision-making in a clinical setting.

Funding from MUR - PRIN 2020, Progetto di Eccellenza 2023-2027 and Regione Lombardia (NEWMED Grant, ID: 117599, POR FESR 2014-2020) is gratefully acknowledged.