Tue, 17 Oct 2017
12:45
C5

Analysis of small contacts between particles in a furnace

Caoimhe Rooney
(Mathematical Institute, University of Oxford)
Abstract

Many metallurgical processes involve the heat treatment of granular material due to large alternating currents. To understand how the current propagates through the material, one must understand the bulk resistivity, that is, the resistivity of the granular material as a whole. The literature suggests that the resistance due to contacts between particles contributes significantly to the bulk resistivity, therefore one must pay particular attention to these contacts. 

My work is focused on understanding the precise impact of small contacts on the current propagation. The scale of the contacts is several order of magnitude smaller than that of the furnace itself, therefore we apply matched asymptotics methods to study how the current varies with the size of the contact.

Tue, 17 Oct 2017

12:00 - 13:15
L4

Waiting for Unruh

Jorma Louko
(Nottingham)
Abstract

How long does a uniformly accelerated observer need to interact with a
quantum field in order to record thermality in the Unruh temperature?
In the limit of large excitation energy, the answer turns out to be
sensitive to whether (i) the switch-on and switch-off periods are
stretched proportionally to the total interaction time T, or whether
(ii) T grows by stretching a plateau in which the interaction remains
at constant strength but keeping the switch-on and switch-off
intervals of fixed duration. For a pointlike Unruh-DeWitt detector,
coupled linearly to a massless scalar field in four spacetime
dimensions and treated within first order perturbation theory, we show
that letting T grow polynomially in the detector's energy gap E
suffices in case (i) but not in case (ii), under mild technical
conditions. These results limit the utility of the large E regime as a

probe of thermality in time-dependent versions of the Hawking and
Unruh effects, such as an observer falling into a radiating black
hole. They may also have implications on the design of prospective
experimental tests of the Unruh effect.

Based on arXiv:1605.01316 (published in CQG) with Christopher J
Fewster and Benito A Juarez-Aubry.

Mon, 16 Oct 2017

16:00 - 17:00
L4

The Jacobian problem of Coifman, Lions, Meyer and Semmes

Sauli Lindberg
(Universidad Autonoma de Madrid)
Abstract

R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes showed in their celebrated paper from 1993 that numerous compensated compactness quantities such as Jacobians of mappings in $W^{1,n}(\mathbb{R}^n,\mathbb{R}^n)$ belong the real-variable Hardy space $\mathcal{H}^1(\mathbb{R}^n)$. They proceeded to ask what is the exact range of these nonlinear quantities and in particular whether the Jacobian operator $J$ maps $W^{1,2}(\mathbb{R}^2,\mathbb{R}^2)$ onto $\mathcal{H}^1(\mathbb{R}^2)$.

I present the proof of my recent result that $J \colon W^{1,n}(\mathbb{R}^n,\mathbb{R}^n) \to \mathcal{H}^1(\mathbb{R}^n)$ is non-surjective for every $n \ge 2$. The surjectivity question is still open when the domain of definition of $J$ is the inhomogeneous Sobolev space $\dot{W}^{1,n}(\mathbb{R}^n,\mathbb{R}^n)$. I also shortly discuss my work on T. Iwaniec's conjecture from 1997 which states that for every $n \ge 2$ and $p \in [1,\infty[$ the operator $J \colon W^{1,np}(\mathbb{R}^n,\mathbb{R}^n) \to \mathcal{H}^p(\mathbb{R}^n)$ has a continuous right inverse.

Mon, 16 Oct 2017
15:45
L6

Higher categories of higher categories

Rune Haugseng
(Copenhagen)
Abstract

I will discuss ongoing work aimed at constructing higher categories of (enriched) higher categories. This should give the appropriate targets for many interesting examples of extended topological quantum field theories, including extended versions of the classical examples of TQFTs due to Turaev-Viro, Reshetikhin-Turaev, etc.

Mon, 16 Oct 2017

15:45 - 16:45
L3

A signature-based machine learning model for bipolar disorder and borderline personality disorder

IMANOL PEREZ
(University of Oxford)
Abstract

The signature of a path has many properties that make it an excellent feature to be used in machine learning. We exploit this properties to analyse a stream of data that arises from a psychiatric study whose objective is to analyse bipolar and borderline personality disorders. We build a machine learning model based on signatures that tries to answer two clinically relevant questions, based on observations of their reported state over a short period of time: is it possible to predict if a person is healthy, has bipolar disorder or has borderline personality disorder? And given a person or borderline personality disorder, it is possible to predict his or her future mood? Signatures proved to be very effective to tackle these two problems.

Mon, 16 Oct 2017

14:15 - 15:15
L3

On uniqueness and blowup properties for a class of second order SDES

EYAL NEUMAN
(Imperial College London)
Abstract

 

Abstract. As the first  step for approaching the uniqueness and blowup properties of the solutions of the stochastic wave equations with multi-plicative noise, we analyze the conditions for the uniqueness and blowup properties of the solution (Xt; Yt) of the equations dXt = Ytdt, dYt = jXtj_dBt, (X0; Y0) = (x0; y0). In particular, we prove that solutions arenonunique if 0 < _ < 1 and (x0; y0) = (0; 0) and unique if 1=2 < _ and (x0; y0) 6= (0; 0). We also show that blowup in _nite time holds if _ > 1 and (x0; y0) 6= (0; 0).

This is a joint work with A. Gomez, J.J. Lee, C. Mueller and M. Salins.

 

Mon, 16 Oct 2017

14:15 - 15:15
L5

Complete non-compact G2-manifolds from asymptotically conical Calabi-Yau 3-folds

Lorenzo Foscolo
(Heriot Watt University)
Abstract

G2-manifolds are the Riemannian 7-manifolds with G2 holonomy and in many respects can be regarded as 7-dimensional analogues of Calabi-Yau 3-folds.
In joint work with Mark Haskins and Johannes Nordström we construct infinitely many families of new complete non-compact G2 manifolds (only four such manifolds were previously known). The underlying smooth 7-manifolds are all circle bundles over asymptotically conical Calabi-Yau 3-folds. The metrics are circle-invariant and have an asymptotic geometry that is the 7-dimensional analogue of the geometry of 4-dimensional ALF hyperkähler metrics. After describing the main features of our construction I will concentrate on some illustrative examples, describing how results in Calabi-Yau geometry about isolated singularities and their resolutions can be used to produce examples of complete G2-manifolds.

 

Mon, 16 Oct 2017
12:45
L3

A geometric recipe for twisted superpotentials

Lotte Hollands
(Herriot-Watt University, Edinburgh)
Abstract

Nekrasov, Rosly and Shatashvili observed that the generating function of a certain space of SL(2) opers has a physical interpretation as the effective twisted superpotential for a four-dimensional N=2 quantum field theory. In this talk we describe the ingredients needed to generalise this observation to higher rank. Important ingredients are spectral networks generated by Strebel differentials and the abelianization method. As an example we find the twisted superpotential for the E6 Minahan-Nemeschansky theory. 
 

 
 
Thu, 12 Oct 2017
16:00
L3

Diffusion of particles with short-range interactions

Maria Bruna
(University of Oxford)
Abstract

In this talk we consider a system of interacting Brownian particles. When diffusing particles interact with each other their motions are correlated, and the configuration space is of very high dimension. Often an equation for the one-particle density function (the concentration) is sought by integrating out the positions of all the others. This leads to the classic problem of closure, since the equation for the concentration so derived depends on the two-particle correlation function. We discuss two  common closures, the mean-field (MFA) and the Kirkwood-superposition approximations, as well as an alternative approach, which is entirely systematic, using matched asymptotic expansions (MAE). We compare the resulting (nonlinear) diffusion models with Monte Carlo simulations of the stochastic particle system, and discuss for which types of interactions (short- or long-range) each model works best. 

Thu, 12 Oct 2017
16:00
L6

Heights and anabelian geometry

Alexander Betts
(Oxford)
Abstract

For a smooth variety over a number field, one defines various different homology groups (Betti, de Rham, etale, log-crystalline), which carry various kinds of enriching structure and are thought of as a system of realisations for a putative underlying (mixed) motivic homology group. Following Deligne, one can study fundamental groups in the same way, and the study of specific realisations of the motivic fundamental group has already found Diophantine applications, for instance in the anabelian proof of Siegel's theorem by Kim.

It is hoped that study of fundamental groups should give one access to ``higher'' arithmetic information not visible in the first cohomology, for instance classical and p-adic heights. In this talk, we will discuss recent work making this hope concrete, by demonstrating how local components of canonical heights on abelian varieties admit a natural description in terms of fundamental groups.

Thu, 12 Oct 2017

16:00 - 17:30
L4

Closing The Loop of Optimal Trading: a Mean Field Game of Controls

Charles-Albert Lehalle
(CFM (France))
Abstract

This talk explains how to formulate the now classical problem of optimal liquidation (or optimal trading) inside a Mean Field Game (MFG). This is a noticeable change since usually mathematical frameworks focus on one large trader in front of a " background noise " (or " mean field "). In standard frameworks, the interactions between the large trader and the price are a temporary and a permanent market impact terms, the latter influencing the public price. Here the trader faces the uncertainty of fair price changes too but not only. He has to deal with price changes generated by other similar market participants, impacting the prices permanently too, and acting strategically. Our MFG formulation of this problem belongs to the class of " extended MFG ", we hence provide generic results to address these " MFG of controls ", before solving the one generated by the cost function of optimal trading. We provide a closed form formula of its solution, and address the case of " heterogenous preferences " (when each participant has a different risk aversion). Last but not least we give conditions under which participants do not need to instantaneously know the state of the whole system, but can " learn " it day after day, observing others' behaviors.

Thu, 12 Oct 2017

14:00 - 15:00
L4

A robust and efficient adaptive multigrid solver for the optimal control of phase field formulations of geometric evolution laws with applications to cell migration

Professor Anotida Madzvamuse
(University of Sussex)
Abstract

In this talk, I will present a novel solution strategy to efficiently and accurately compute approximate solutions to semilinear optimal control problems, focusing on the optimal control of phase field formulations of geometric evolution laws.
The optimal control of geometric evolution laws arises in a number of applications in fields including material science, image processing, tumour growth and cell motility.
Despite this, many open problems remain in the analysis and approximation of such problems.
In the current work we focus on a phase field formulation of the optimal control problem, hence exploiting the well developed mathematical theory for the optimal control of semilinear parabolic partial differential equations.
Approximation of the resulting optimal control problem is computationally challenging, requiring massive amounts of computational time and memory storage.
The main focus of this work is to propose, derive, implement and test an efficient solution method for such problems. The solver for the discretised partial differential equations is based upon a geometric multigrid method incorporating advanced techniques to deal with the nonlinearities in the problem and utilising adaptive mesh refinement.
An in-house two-grid solution strategy for the forward and adjoint problems, that significantly reduces memory requirements and CPU time, is proposed and investigated computationally.
Furthermore, parallelisation as well as an adaptive-step gradient update for the control are employed to further improve efficiency.
Along with a detailed description of our proposed solution method together with its implementation we present a number of computational results that demonstrate and evaluate our algorithms with respect to accuracy and efficiency.
A highlight of the present work is simulation results on the optimal control of phase field formulations of geometric evolution laws in 3-D which would be computationally infeasible without the solution strategies proposed in the present work.

Thu, 12 Oct 2017
12:00
L4

A new flocking model through body attitude coordination

Sara Merino Aceituno
(Imperial College)
Abstract

We present a new model for multi-agent dynamics where each agent is described by its position and body attitude: agents travel at a constant speed in a given direction and their body can rotate around it adopting different configurations. Agents try to coordinate their body attitudes with the ones of their neighbours. This model is inspired by the Vicsek model. The goal of this talk will be to present this new flocking model, its relevance and the derivation of the macroscopic equations from the particle dynamics.

Wed, 11 Oct 2017
15:00
L4

Hierarchical Identity-based Encryption from Ideal Lattices

Peter Campbell
(NCSC)
Abstract

Identity-based cryptography can be useful in situations where a full-scale public-key infrastructure is impractical.  Original identity-based proposals relied on elliptic curve pairings and so are vulnerable to quantum computers.  I will describe some on-going work to design a post-quantum identity-based encryption scheme using ideas from Ring Learning with Errors. Our scheme has the advantage that it can be extended to the hierarchical setting for more flexible key management.

Wed, 11 Oct 2017

11:00 - 12:30
N3.12

Game, Set and Bound!

Adam Keilthy
(Oxford University)
Abstract


In the game 'Set', players compete to pick out groups of three cards sharing common attributes. But how many cards must be dealt before such a group must appear? 
This is an example of a "cap set problem", a problem in Ramsey theory: how big can a set of objects get before some form of order appears? We will translate the cap set problem into a problem of geometry over finite fields, discussing the current best upper bounds and running through an elementary proof. We will also (very) briefly discuss one or two implications of the cap set problem over F_3 to other questions in Ramsey theory and computational complexity
 

Tue, 10 Oct 2017

16:00 - 17:00
L5

Approximation, domination and integration

Boris Zilber
(Oxford)
Abstract

The talk will focus on results of two related strands of research undertaken by the speaker. The first is a model of quantum mechanics based on the idea of 'structural approximation'. The earlier paper 'The semantics of the canonical commutation relations' established a method of calculation, essentially integration, for quantum mechanics with quadratic Hamiltonians. Currently, we worked out a (model-theoretic) formalism for the method, which allows us to
perform more subtle calculations, in particular, we prove that our path integral calculation produce correct formula for quadratic Hamiltonians avoiding non-conventional limits used by physicists. Then we focus on the model-theoretic analysis of the notion of structural approximation and show that it can be seen as a positive model theory version of the theory of measurable structures, compact domination and integration (p-adic and adelic).

Tue, 10 Oct 2017

15:45 - 16:45
L4

Mirror symmetry for affine hypersurfaces

Benjamin Gammage
(Berkeley)
Abstract

Using tropical geometry and new methods in the theory of Fukaya categories, we explain a mirror symmetry equivalence relating the Fukaya category of a hypersurface and the category of coherent sheaves on the boundary of a toric variety.

Tue, 10 Oct 2017
14:30
L6

Random Triangles in Random Graphs

Oliver Riordan
(Oxford University)
Abstract

Given a graph $G$, we can form a hypergraph $H$ whose edges correspond to the triangles in $G$. If $G$ is the standard Erdős-Rényi random graph with independent edges, then $H$ is random, but its edges are not independent, because of overlapping triangles. This is (presumably!) a major complication when proving results about triangles in random graphs.  However, it turns out that, for many purposes, we can treat the triangles as independent, in a one-sided sense (and losing something in the density): we can find an independent random hypergraph within the set of triangles. I will present two proofs, one of which generalizes to larger complete (and some non-complete) subgraphs.

Tue, 10 Oct 2017

14:30 - 15:00
L5

A novel DG method using the principle of discrete least squares

Jan Glaubitz
(TU Braunschweig)
Abstract

In this talk, a novel discontinuous Galerkin (DG) method is introduced by utilising the principle of discrete least squares. The key idea is to build polynomial approximations by the method of  (weighted) discrete least squares instead of usual interpolation or (discrete) $L^2$ projections. The resulting method hence uses more information of the underlying function and provides a more robust alternative to common DG methods. As a result, we are able to construct high-order schemes which are conservative as well as linear stable on any set of collocation points. Several numerical tests highlight the new discontinuous Galerkin discrete least squares (DG-DLS) method to significantly outperform present-day DG methods.

Tue, 10 Oct 2017

14:00 - 14:30
L5

Generalised Summation-by-Parts Operators, Entropy Stability, and Split Forms

Hendrik Ranocha
(TU Braunschweig)
Abstract

High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finite difference and the discontinuous Galerkin spectral element framework.

However, if generalised SBP operators are used, the treatment of boundaries becomes more difficult since some properties of the continuous level are no longer mimicked discretely —interpolating the product of two functions will in general result in a value different from the product of the interpolations. Thus, desired properties such as conservation and stability are more difficult to obtain.

In this talk, the concept of generalised SBP operators and their application to entropy stable semidiscretisations will be presented. Several recent ideas extending the range of possible methods are discussed, presenting both advantages and several shortcomings.

Tue, 10 Oct 2017

13:00 - 14:00
C1

Multiparameter persistent homology: applications and algorithms

Nina Otter
Abstract

In this talk I will first briefly introduce 1-parameter persistent homology, and discuss some applications and the theoretical challenges in the multiparameter case. If time remains I will explain how tools from commutative algebra give invariants suitable for the study of data. This last part is based on the preprint https://arxiv.org/abs/1708.07390.
 

Tue, 10 Oct 2017

12:00 - 13:15
L4

Connecting the ambitwistor and the sectorized heterotic strings

Dr Thales Azevedo
(Uppsala University)
Abstract

Shortly after Mason & Skinner introduced the so-called ambitwistor strings, Berkovits came up with a pure-spinor analogue of the theory, which was later shown to provide the supersymmetric version of the Cachazo-He-Yuan amplitudes. In the heterotic version, however, both models give somewhat unsatisfactory descriptions of the supergravity sector.

In this talk, I will show how the original pure-spinor version of the heterotic ambitwistor string can be modified in a consistent manner that renders the supergravity sector treatable. In addition to the massless states, the spectrum of the new model --- which we call sectorized heterotic string --- contains a single massive level. In the limit in which a dimensionful parameter is taken to infinity, these massive states become the unexpected massless states (e.g. a 3-form potential) first encountered by Mason & Skinner."

Mon, 09 Oct 2017
15:45
L6

Topological dimension of the boundaries of some hyperbolic Out(F_n)-graphs

Richard D. Wade
(Oxford)
Abstract

Klarrich showed that the Gromov boundary of the curve complex of a hyperbolic surface is homeomorphic to the space of ending laminations on that surface. Independent results of Bestvina-Reynolds and Hamenstädt give an analogous statement for the free factor graph of a free group, where the space of ending laminations is replaced with a space of equivalence classes of arational trees. I will give an introduction to these objects and describe some joint work with Bestvina and Horbez, where we show that the Gromov boundary of the free factor graph for a free group of rank N has topological dimension at most 2N-2.

Mon, 09 Oct 2017

14:15 - 15:15
L4

Morse inequalities for arbitrary smooth functions

Frances Kirwan
(Oxford)
Abstract

A Morse function (and more generally a Morse-Bott function) on a compact manifold M has associated Morse inequalities. The aim of this
talk is to explain how we can associate Morse inequalities to any smooth function on M (reporting on work of/with G Penington).

 

Mon, 09 Oct 2017

14:15 - 15:15
L3

Inverting the signature of a path

JIAWEI CHANG
(University of Oxford)
Abstract

Inverting the signature of a path with ideas from linear algebra with implementations.

Mon, 09 Oct 2017
12:45
L3

Arithmetic of attractive K3 surfaces and black holes

Shehryar Sikander
(ICTP Trieste)
Abstract

A K3 surface is called attractive if and only if its Picard number is 20: The maximal possible. Attractive K3 surfaces possess complex multiplication. This property endows attractive K3 surfaces with rich and well understood arithmetic. For example, the associated Galois representation turns out to be a product of well known two dimensional representations and the  Hasse-Weil L-function turns out to be a product of well known L-functions. On the other hand, attractive K3 surfaces show up as solutions of the attractor equations in type IIB string theory compactified on the product of a K3 surface with an elliptic curve. As such, these surfaces dictate the near horizon geometry of a charged black hole in this theory. We will try to see which arithmetic properties of the attractive K3 surfaces lend a stringy interpretation and use them to shed light on physical properties of the charged black hole. 
 

 
 
 
Fri, 06 Oct 2017

16:00 - 17:00
C5

Some recent results in several complex variables and complex geometry

Xiangyu Zhou
(Chinese Academy of Science Beijing)
Abstract

After recalling some backgrounds and motivations, we'll report some recent results on the optimal L^2 extensions and multiplier ideal sheaves, with emphasizing the close relations between SCV and PDE.

Tue, 26 Sep 2017

14:00 - 14:30
C4

Low algebraic dimension matrix completion

Greg Ongie
(University of Michigan)
Abstract

We consider a generalization of low-rank matrix completion to the case where the data belongs to an algebraic variety, i.e., each data point is a solution to a system of polynomial equations. In this case, the original matrix is possibly high-rank, but it becomes low-rank after mapping each column to a higher dimensional space of monomial features. Many well-studied extensions of linear models, including affine subspaces and their union, can be described by a variety model. We study the sampling requirements for matrix completion under a variety model with a focus on a union of subspaces. We also propose an efficient matrix completion algorithm that minimizes a surrogate of the rank of the matrix of monomial features, which is able to recover synthetically generated data up to the predicted sampling complexity bounds. The proposed algorithm also outperforms standard low-rank matrix completion and subspace clustering techniques in experiments with real data.

Fri, 22 Sep 2017

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Asbjørn Riseth, Fabian Ying, Caoimhe Rooney, Zachary Wilmott
(Mathematical Institute)
Thu, 14 Sep 2017

17:00 - 18:00
L3

Homological stability and meta-stability for mapping class groups

Soren Galatius
(Stanford and Copenhagen)
Abstract

Let \Gamma_{g,1} denote the mapping class group of a genus g surface with one parametrized boundary component.  The group homology H_i(\Gamma_{g,1}) is independent of g, as long as g is large compared to i, by a famous theorem of Harer known as homological stability, now known to hold when 2g > 3i.  Outside that range, the relative homology groups H_i(\Gamma_{g,1},\Gamma_{g-1,1}) contain interesting information about the failure of homological stability.  In this talk, I will discuss a metastability result; the relative groups depend only on the number k = 2g-3i, as long as g is large compared to k.  This is joint work with Alexander Kupers and Oscar Randal-Williams.

Thu, 14 Sep 2017

15:30 - 16:30
L3

The smooth homotopy category

Graeme Segal
(Oxford)
Abstract

The smooth homotopy category is a simultaneous enlargement of the usual homotopy category and of the category of smooth manifolds. Its structure can be described very simply and explicitly by a version of van Est's theorem.  It provides us with an  interpolation between topology and geometry (and with a toy model of derived algebraic geometry and motivic homotopy theory, though I shall not pursue those directions).  My talk will list some situations which the category seems to illuminate: one will be Kapranov's beautiful description of the Lie algebra of the 'group' of based loops in a manifold.
 

Mon, 04 Sep 2017

12:00 - 13:00
N4.01

Some Mathematical Theories of Boundary Layers with no-slip Boundary Condition

Tong Yang
(City University of Hong Kong)
Abstract

After a brief review on the classical Prandtl system, we introduce our recent work on the well-posedness and high Reynolds numbers limit for the MHD boundary layer that shows the tangential magnetic field stabilizes the boundary layer. And then we will discuss some instability phenomena of the shear flow for both the classical Prandtl and MHD boundary layer systems. The talk includes some recent joint works with Chengjie Liu, Yaguang Wang on the classical Prandtl equation, and with Chengjie Liu and Feng Xie on the magnetohydrodynamic boundary layer.

Fri, 01 Sep 2017

12:00 - 13:00
L5

On traffic modeling and the Braess paradox

Helge Holden
(Norwegian University of Science and Technology)
Abstract

We will discuss models for vehicular traffic flow on networks. The models include both the Lighthill-Whitham-Richards (LWR) model and Follow-the-Leader (FtL) models.
The emphasis will be on the Braess paradox in which adding a road to a traffic network can make travel times worse for all drivers. 
In addition we will present a novel proof how FtL models approximate the LWR model in case of heavy traffic.

Thu, 24 Aug 2017

15:00 - 16:00
L6

Unbounded derived categories and the finitistic dimension conjecture.

Jeremy Rickard
(Bristol University)
Abstract

Abstract: If A is a finite dimensional algebra, and D(A) the unbounded
derived category of the full module category Mod-A, then it is
straightforward to see that D(A) is generated (as a "localizing
subcategory") by the indecomposable projectives, and by the simple 
modules. It is not so obvious whether it is generated by the 
indecomposable injectives. In 2001, Keller gave a talk in which he 
remarked that"injectives generate" would imply several of the well-known
homological conjectures, such as the Nunke condition and hence the 
generalized Nakayama
conjecture, and asked if there was any relation to the finitistic 
dimension conjecture. I'll show that an algebra that satisfies "injectives 
generate" also satisfies the finitistic dimension conjecture and discuss 
some examples. I'll present things in a fairly concrete way, so most of 
the talk won't assume much knowledge of derived categories.

 

Thu, 24 Aug 2017

14:00 - 15:00
L6

On Hochschild cohomology and global/local structures

Lleonard Rubio y Degrassi
(City University London)
Abstract

Abstract: In this talk I will discuss the interplay between the local and
the global invariants in modular representation theory with a focus on the
first Hochschild cohomology $\mathrm{HH}^1(B)$ of a block algebra $B$. In
particular, I will show the compatibility between $r$-integrable 
derivations
and stable equivalences of Morita type. I will also show that if
$\mathrm{HH}^1(B)$ is a simple Lie algebra such that $B$ has a unique
isomorphism class of simple modules, then $B$ is nilpotent with an
elementary abelian defect group $P$ of order at least 3. The second part 
is joint work with M. Linckelmann.

Thu, 24 Aug 2017

11:30 - 12:30
L6

Quivers and Conformal Field Theory: preprojective algebras and beyond.

Alastair King
(Bath University)
Abstract

Abstract: I will describe how the ADE preprojective algebras appear in 
certain Conformal Field Theories, namely SU(2) WZW models, and explain
the generalisation to the SU(3) case, where 'almost CY3' algebras appear.

Thu, 24 Aug 2017

10:00 - 11:00
L6

New varieties for algebras

Sibylle Schroll (Leicester)
(Leicester)
Abstract

Abstract: In this talk, we will introduce new affine algebraic varieties 
for algebras given by quiver and relations. Each variety contains a 
distinguished element in the form of a monomial algebra. The properties 
and characteristics of this monomial algebra govern those of all other 
algebras in the variety. We will show how amongst other things this gives 
rise to a new way to determine whether an algebra is quasi-hereditary. 
This is a report on joint work both with Ed Green and with Ed Green and 
Lutz Hille.

Wed, 23 Aug 2017

16:45 - 17:45
L6

A McKay correspondence for reflection groups.

Eleonore Faber (Michigan/Leeds)
(University of Michigan, USA)
Abstract

Abstract: This is joint work with Ragnar-Olaf Buchweitz and Colin Ingalls. 
The classical McKay correspondence relates the geometry of so-called 
Kleinian surface singularities with the representation theory of finite 
subgroups of SL(2,C). M. Auslander observed an algebraic version of this 
correspondence: let G be a finite subgroup of SL(2,K) for a field K whose
characteristic does not divide the order of G. The group acts linearly on 
the polynomial ring S=K[x,y] and then the so-called skew group algebra
A=G*S can be seen as an incarnation of the correspondence. In particular
A is isomorphic to the endomorphism ring of S over the corresponding 
Kleinian surface singularity.
Our goal is to establish an analogous result when G in GL(n,K) is a finite 
subgroup generated by reflections, assuming that the characteristic
of K does not divide the order of the group. Therefore we will consider a 
quotient of the skew group ring A=S*G, where S is the polynomial ring in n 
variables. We show that our construction yelds a generalization of 
Auslander's result, and moreover, a noncommutative resolution of the 
discriminant of the reflection group G.

Wed, 23 Aug 2017

15:00 - 16:00
L6

On endotrivial modules for finite reductive groups.

Nadia Mazza (Lancaster)
(University of Lancaster)
Abstract

Abstract: Joint work with Carlson, Grodal, Nakano. In this talk we will
present some recent results on an 'important' class of modular 
representations for an 'important' class of finite groups. For the 
convenience of the audience, we'll briefly review the notion of an 
endotrivial module and present the main results pertaining endotrivial 
modules and finite reductive groups which we use in our ongoing work.

Wed, 23 Aug 2017

14:00 - 15:00
L6

Representations and cohomology of finite group schemes and finite supergroup schemes.

Dave Benson (Aberdeen)
(University of Aberdeen)
Abstract

I shall describe recent work with Srikanth Iyengar, Henning 
Krause and Julia Pevtsova on the representation theory and cohomology
of finite group schemes and finite supergroup schemes. Particular emphasis 
will be placed on the role of generic points, detection of projectivity
for modules, and detection modulo nilpotents for cohomology.

 

Fri, 11 Aug 2017

13:00 - 14:00
C1

Invertible Topological Field Theories

Benedict Morrissey
(UPenn)
Abstract

Topological field theories (TFT's) are physical theories depending only on the topological properties of spacetime as opposed to also depending on the metric of spacetime.  This talk will introduce topological field theories, and the work of Freed and Hopkins on how a class of TFT's called "invertible" TFT's describe certain states of matter, and are classified by maps of spectra.  Constructions of field theories corresponding to specific maps of spectra will be described.
 

Wed, 09 Aug 2017

13:30 - 17:15
L3

Networks: from Matrix Functions to Quantum Physics

Prof. Peter Grindrod CBE
Abstract

This half-day research workshop will address issues at the intersection between network science, matrix theory and mathematical physics.

Network science is producing a wide range of challenging research problems that have diverse applications across science and engineering. It is natural to cast these research challenges in terms of matrix function theory. However, in many cases, closely related problems have been tackled by researchers working in statistical physics, notably quantum mechanics on graphs and quantum chaos. This workshop will discuss recent progress that has been made in both fields and highlight opportunities for cross-fertilization. While focusing on mathematical, physical and computational issues, some results will also be presented for real data sets of relevance to practitioners in network science.

Tue, 01 Aug 2017

15:30 - 16:30
L5

A turbulent State for Electrical Signals in the Heart: Treatments & Mechanisms

James Glimm
(Stony Brook University)
Abstract

Fibrillation is a chaotic, turbulent state for the electrical signal fronts in the heart. In the ventricle it is fatal if not treated promptly. The standard treatment is by an electrical shock to reset the cardiac state to a normal one and allow resumption of a normal heart beat.

The fibrillation wave fronts are organized into scroll waves, more or less analogous to a vortex tube in fluid turbulence. The centerline of this 3D rotating object is called a filament, and it is the organizing center of the scroll wave.

The electrical shock, when turned on or off, creates charges at the conductivity discontinuities of the cardiac tissue. These charges are called virtual electrodes. They charge the region near the discontinuity, and give rise to wave fronts that grow through the heart, to effect the defibrillation. There are many theories, or proposed mechanisms, to specify the details of this process. The main experimental data is through signals on the outer surface of the heart, so that simulations are important to attempt to reconstruct the electrical dynamics within the interior of the heart tissue. The primary electrical conduction discontinuities are at the cardiac surface. Secondary discontinuities, and the source of some differences of opinion, are conduction discontinuities at blood vessel walls.

In this lecture, we will present causal mechanisms for the success of the virtual electrodes, partially overlapping, together with simulation and biological evidence for or against some of these.

The role of small blood vessels has been one area of disagreement. To assess the role of small blood vessels accurately, many details of the modeling have been emphasized, including the thickness and electrical properties of the blood vessel walls, the accuracy of the biological data on the vessels, and their distribution though the heart. While all of these factors do contribute to the answer, our main conclusion is that the concentration of the blood vessels on the exterior surface of the heart and their relative wide separation within the interior of the heart is the factor most strongly limiting the significant participation of small blood vessels in the defibrillation process.

 

Tue, 01 Aug 2017

14:00 - 15:00
L5

Reaction Diffusion Equations and Electrical Signals in the Heart

James Glimm
(Stony Brook University)
Abstract

Since the pioneering work of Hodgkin and Huxley , we know that electrical signals propagate along a nerve fiber via ions that flow in and out of the fiber, generating a current. The voltages these currents generate are subject to a diffusion equation, which is a reduced form of the Maxwell equation. The result is a reaction (electrical currents specified by an ODE) coupled to a diffusion equation, hence the term reaction diffusion equation.

The heart is composed of nerve fibers, wound in an ascending spiral fashion along the heart chamber. Modeling not individual nerve fibers, but many within a single mesh block, leads to partial differential equation coupled to the reaction ODE.

As with the nerve fiber equation, these cardiac electrical equations allow a propagating wave front, which normally moves from the bottom to the top of the heart, giving rise to contractions and a normal heart beat, to accomplish the pumping of blood.

The equations are only borderline stable and also allow a chaotic, turbulent type wave front motion called fibrillation.

In this lecture, we will explain the 1D traveling wave solution, the 3D normal wave front motion and the chaotic state.

The chaotic state is easiest to understand in 2D, where it consists of spiral waves rotating about a center. The 3D version of this wave motion is called a scroll wave, resembling a fluid vortex tube.

In simplified models of reaction diffusion equations, we can explain much of this phenomena in an analytically understandable fashion, as a sequence of period doubling transitions along the path to chaos, reminiscent of the laminar to turbulent transition.

Mon, 31 Jul 2017

12:00 - 13:15
L5

The Einstein-Maxwell Equations & Conformally Kaehler Geometry

Claude LeBrun
(Stonybrook)
Abstract


  Any constant-scalar-curvature Kaehler (cscK) metric on a complex surface may be viewed as a solution of the Einstein-Maxwell equations, and this allows one to produce solutions of these equations on any 4-manifold that arises as a compact complex surface with even first Betti number. However, not all solutions of the Einstein-Maxwell equations on such manifolds arise in this way. In this lecture, I will describe a construction of new compact examples that are Hermitian, but not Kaehler.