15:30
A Topological Turán Problem
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
The classical Turán problem asks: given a graph $H$, how many edges can an $4n$-vertex graph have while containing no isomorphic copy of $H$? By viewing $(k+1)$-uniform hypergraphs as $k$-dimensional simplicial complexes, we can ask a topological version (first posed by Nati Linial): given a $k$-dimensional simplicial complex $S$, how many facets can an $n$-vertex $k$-dimensional simplicial complex have while containing no homeomorphic copy of $S$? Until recently, little was known for $k > 2$. In this talk, we give an answer for general $k$, by way of dependent random choice and the combinatorial notion of a trace-bounded hypergraph. Joint work with Jason Long and Bhargav Narayanan.