Thu, 13 Jul 2017
13:30
C1

The universal triangle-free graph has finite big Ramsey degrees

Natasha Dobrinen
(Denver)
Abstract

A main part of the proof uses forcing to establish a Ramsey theorem on a new type of tree, though the result holds in ZFC.  The space of such trees almost forms a topological Ramsey space.

Mon, 10 Jul 2017
14:30

Restrictions on the size of some kinds of locally compact spaces

Peter Nyikos
(South Carolina)
Abstract

The talk will focus on five items:

Theorem 1. It is ZFC-independent whether every locally compact, $\omega_1$-compact space of cardinality $\aleph_1$  is the union of countably many countably compact spaces.

Problem 1. Is it consistent that every locally compact, $\omega_1$-compact space of cardinality $\aleph_2$  is the union of countably many countably compact spaces?

[`$\omega_1$-compact' means that every closed discrete subspace is countable. This is obviously implied by being the union of countably many countably compact spaces, but the converse is not true.]

Problem 2. Is ZFC enough to imply that there is  a normal, locally countable, countably compact space of cardinality greater than $\aleph_1$?

Problem 3. Is it consistent that there exists a normal, locally countable, countably compact space of cardinality greater than $\aleph_2$?

The spaces involved in Problem 2 and Problem 3 are automatically locally compact, because by "space" I mean "Hausdorff space" and so regularity is already enough to give every point a countable countably compact (hence compact) neighborhood.

Theorem 2. The axiom $\square_{\aleph_1}$ implies that there is a normal, locally countable, countably compact space of cardinality $\aleph_2$.

This may be the first application of $\square_{\aleph_1}$ to construct a topological space whose existence in ZFC is unknown.

Wed, 28 Jun 2017

17:00 - 18:15
L1

Sanjeev Goyal - The Law of the Few

Sanjeev Goyal
(University of Cambridge)
Abstract

Oxford Mathematics Public Lectures

The Law of the Few - Sanjeev Goyal

The study of networks offers a fruitful approach to understanding human behaviour. Sanjeev Goyal is one of its pioneers. In this lecture Sanjeev presents a puzzle:

In social communities, the vast majority of individuals get their information from a very small subset of the group – the influencers, connectors, and opinion leaders. But empirical research suggests that there are only minor differences between the influencers and the others. Using mathematical modelling of individual activity and networking and experiments with human subjects, Sanjeev helps explain the puzzle and the economic trade-offs it contains.

Professor Sanjeev Goyal FBA is the Chair of the Economics Faculty at the University of Cambridge and was the founding Director of the Cambridge-INET Institute.

28 June 2017, 5.00-6.00pm, Lecture Theatre 1, Mathematical Institute Oxford.

Please email @email to register

Wed, 21 Jun 2017
15:00
S2.37

Post-Quantum Key Exchange from the LWE

Jintai Ding
(University of Cincinnati)
Abstract

In this lecture, we present  practical and provably
secure (authenticated) key exchange protocol and password
authenticated key exchange protocol, which are based on the
learning with errors problems. These protocols are conceptually
simple and have strong provable security properties.
This type of new constructions were started in 2011-2012.
These protocols are shown indeed practical.  We will explain
that all the existing LWE based key exchanges are variants
of this fundamental design.  In addition, we will explain
some issues with key reuse and how to use the signal function
invented for KE for authentication schemes.

Tue, 20 Jun 2017

14:00 - 15:00
L5

Numerical Convolution for Tensor Operations

Professor Wolfgang Hackbusch
(Max Planck Institute Leipzig)
Abstract

Starting from an example in quantum chemistry, we explain the techniques of Numerical Tensor Calculus with particular emphasis on the convolution operation. The tensorisation technique also applies to one-dimensional grid functions and allows to perform the convolution with a cost which may be much cheaper than the fast Fourier transform.

Fri, 16 Jun 2017

16:00 - 17:00
L1

North meets South Colloquium

Lisa Lamberti + Jaroslav Fowkes
(Mathematical Insitute, Oxford)
Abstract

Lisa Lamberti

No image

Geometric models in algebra and beyond

Many phenomena in mathematics and related sciences are described by geometrical models.

In this talk, we will see how triangulations in polytopes can be used to uncover combinatorial structures in algebras. We will also glimpse at possible generalizations and open questions, as well as some applications of geometric models in other disciplines.

Jaroslav Fowkes

[[{"fid":"47972","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Jaroslav Fowkes","field_file_image_title_text[und][0][value]":"Jaroslav Fowkes"},"type":"media","attributes":{"alt":"Jaroslav Fowkes","title":"Jaroslav Fowkes","height":"258","width":"258","class":"media-element file-media-square"}}]]

Optimization Challenges in the Commercial Aviation Sector

The commercial aviation sector is a low-margin business with high fixed costs, namely operating the aircraft themselves. It is therefore of great importance for an airline to maximize passenger capacity on its route network. The majority of existing full-service airlines use largely outdated capacity allocation models based on customer segmentation and fixed, pre-determined price levels. Low-cost airlines, on the other hand, mostly fly single-leg routes and have been using dynamic pricing models to control demand by setting prices in real-time. In this talk, I will review our recent research on dynamic pricing models for the Emirates route network which, unlike that of most low-cost airlines, has multiple routes traversing (and therefore competing for) the same leg.

Fri, 16 Jun 2017

14:00 - 15:00
C2

Cooperating around a theory: the example of lattice theory in the 1930s

Simon Decaens
(Université Paris Diderot)
Abstract

In 1933, lattice theory was a new subject, put forth by Garrett Birkhoff. In contrast, in 1940, it was already a mature subject, worth publishing a book on. Indeed, the first monograph, written by the same G. Birkhoff, was the result of these 7 years of working on a lattice theory. In my talk, I would like to focus on this fast development. I will present the notion of a theory not only as an actors' category but as an historical category. Relying on that definition, I would like to focus on some collaborations around the notion of lattices. In particular, we will study lattice theory as a meeting point between the works of G. Birkhoff and two other mathematicians: John von Neumann and Marshall Stone.

Fri, 16 Jun 2017

11:00 - 12:00
C3

Rational points on curves over function fields (with F. Pazuki)

Amilcar Pacheco
(Oxford and Universidade Federal do Rio de Janeiro)
Abstract

Let X be a smooth, complete geometrically connected curve defined over a one variable function field K over a finite field. Let G be a subgroup of the points of the Jacobian variety J of X defined over a separable closure of K with the property that G/p is finite, where p is the characteristic of K. Buium and Voloch, under the hypothesis that X is not defined over K^p, give an explicit bound for the number of points of X which lie in G (related to a conjecture of Lang, in the case of curves). In this joint work with Pazuki, we extend their result by requiring just that X is non isotrivial.

Thu, 15 Jun 2017
17:30
L6

Geometric Representation in Pseudo-finite Fields

Ozlem Beyerslan
(Istanbul)
Abstract

Groups which are "attached" to theories of fields, appearing in models of the theory  
as the automorphism groups of intermediate fields fixing an elementary submodel are called geometrically represented. 
We will discuss the concept ``geometric representation" in the case of pseudo finite fields.  Then will show that any group which is geometrically represented in a complete theory of a pseudo-finite field must be abelian. 
This result also generalizes to bounded PAC fields. This is joint work with Zoe Chatzidakis.
 

Thu, 15 Jun 2017
16:00
L6

Non-abelian reciprocity laws and higher Brauer-Manin obstructions

Jon Pridham
(Edinburgh)
Abstract

Kim's iterative non-abelian reciprocity laws carve out a sequence of subsets of the adelic points of a suitable algebraic variety, containing the global points. Like Ellenberg's obstructions to the existence of global points, they are based on nilpotent approximations to the variety. Systematically exploiting this idea gives a sequence starting with the Brauer-Manin obstruction, based on the theory of obstruction towers in algebraic topology. For Shimura varieties, nilpotent approximations are inadequate as the fundamental group is nearly perfect, but relative completions produce an interesting obstruction tower. For modular curves, these maps take values in Galois cohomology of modular forms, and give obstructions to an adelic elliptic curve with global Tate module underlying a global elliptic curve.

Thu, 15 Jun 2017
16:00
C5

A discussion of Lurie's proof of the cobordism hypothesis

Adrian Clough
(University of Texas at Austin)
Abstract

Despite its fame there appears to be little literature outlining Lurie's proof sketched in his expository article "On the classification of topological field theories." I shall embark on the quixotic quest to explain how the cobordism hypothesis is formalised and give an overview of Lurie's proof in one hour. I will not be able to go into any of the motivation, but I promise to try to make the talk as accessible as possible. 

Thu, 15 Jun 2017

16:00 - 17:00
L3

Asymptotic analysis of a two-front Stefan problem; Asymptotic analysis of a silicon furnace model

Ferran Brosa Planella, Ben Sloman
(University of Oxford)
Abstract

Understanding the evolution of a solidification front is important in the study of solidification processes. Mathematically, self-similar solutions exist to the Stefan problem when the liquid domain is assumed semi-infinite, and such solutions have been extensively studied in the literature. However, in the case where the liquid region is finite and sufficiently small, such of solutions no longer hold, as in this case two solidification fronts will move toward each other and interact. We present an asymptotic analysis for the two-front Stefan problem with a small amount of constitutional supercooling and compare the asymptotic results with numerical simulations. We finally discuss ongoing work on the same problem near the time when the two fronts are close to colliding.
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Silicon is produced from quartz rock in electrode-heated furnaces by using carbon as a reduction agent. We present a model of the heat and mass transfer in an experimental pilot furnace and perform an asymptotic analysis of this model. First, by prescribing a steady state temperature profile in the furnace we explore the leading order reactions in different spatial regions. We next utilise the dominant behaviour when temperature is prescribed to reduce the full model to two coupled partial differential equations for the time-variable temperature profile within the furnace and the concentration of solid quartz. These equations account for diffusion, an endothermic reaction, and the external heating input to the system. A moving boundary is found and the behaviour on either side of this boundary explored in the asymptotic limit of small diffusion. We note how the simplifications derived may be useful for industrial furnace operation.

Thu, 15 Jun 2017

16:00 - 17:30
C4

General Dynamic Term Structures under Default Risk

Claudio Fontana
(University Paris Diderot)
Abstract

We consider the problem of modelling the term structure of defaultable bonds, under minimal assumptions on the default time. In particular, we do not assume the existence of a default intensity and we therefore allow for the possibility of default at predictable times. It turns out that this requires the introduction of an additional term in the forward rate approach by Heath, Jarrow and Morton (1992). This term is driven by a random measure encoding information about those times where default can happen with positive probability.  In this framework, we  derive necessary and sufficient conditions for a reference probability measure to be a local martingale measure for the large financial market of credit risky bonds, also considering general recovery schemes. This is based on joint work with Thorsten Schmidt.

Thu, 15 Jun 2017

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Discrete adjoints on many cores - algorithmic differentiation and verification for accelerated PDE solvers

Dr Jan Hückelheim
(Imperial College, London)
Abstract


Adjoint derivatives reveal the sensitivity of a computer program's output to changes in its inputs. These derivatives are useful as a building block for optimisation, uncertainty quantification, noise estimation, inverse design, etc., in many industrial and scientific applications that use PDE solvers or other codes.
Algorithmic differentiation (AD) is an established method to transform a given computation into its corresponding adjoint computation. One of the key challenges in this process is the efficiency of the resulting adjoint computation. This becomes especially pressing with the increasing use of shared-memory parallelism on multi- and many-core architectures, for which AD support is currently insufficient.
In this talk, I will present an overview of challenges and solutions for the differentiation of shared-memory-parallel code, using two examples: an unstructured-mesh CFD solver, and a structured-mesh stencil kernel, both parallelised with OpenMP. I will show how AD can be used to generate adjoint solvers that scale as well as their underlying original solvers on CPUs and a KNC XeonPhi. The talk will conclude with some recent efforts in using AD and formal verification tools to check the correctness of manually optimised adjoint solvers.
 

Thu, 15 Jun 2017
12:00
L3

Two-phase model of crowd propagation

Ewelina Zatorska
(Imperial College)
Abstract

I will talk about the fluid equations used to model pedestrian motion and traffic. I will present the compressible-incompressible Navier-Stokes two phase system describing the flow in the free and in the congested regimes, respectively. I will also show how to approximate such system by the compressible Navier-Stokes equations with singular pressure for the fixed barrier densities and also some recent developments for the barrier densities varying in the space and time.
This is a talk based on several papers in collaboration with: D. Bresch, C. Perrin, P. Degond, P. Minakowski, and L. Navoret.
 

Wed, 14 Jun 2017

11:30 - 12:30
N3.12

Finiteness properties and subdirect products of groups

Claudio Llosa Isenrich
(University of Oxford)
Abstract

In my talk I will give a basic introduction to the finiteness properties of groups and their relation to subgroups of direct products of groups. I will explain the relation between such subgroups and fibre products of groups, and then proceed with a discussion of the n-(n+1)-(n+2)-Conjecture and the Virtual Surjections Conjecture. While both conjectures are still open in general, they are known to hold in special cases. I will explain how these results can be applied to prove that there are groups with arbitrary (non-)finiteness properties.

Tue, 13 Jun 2017
14:30
L6

On the number of distinct vertex sets covered by cycles

Jaehoon Kim
(Birmingham)
Abstract

Komlós conjectured in 1981 that among all graphs with minimum degree at least $d$, the complete graph $K_{d+1}$ minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when $d$ is sufficiently large.  In fact we prove a stronger result: for large $d$, any graph $G$ with average degree at least $d$ contains almost twice as many Hamiltonian subsets as $K_{d+1}$, unless $G$ is isomorphic to $K_{d+1}$ or a certain other graph which we specify. This is joint work with Hong Liu, Maryam Sharifzadeh and Katherine Staden.

Tue, 13 Jun 2017

12:45 - 13:30
C5

Modelling Lead-acid batteries for off-grid energy storage systems

Tino Sulzer
(Mathematical Institute)
Abstract

One of the greatest challenges in developing renewable energy sources is finding an efficient energy storage solution to smooth out the inherently fluctuating supply. One cheap solution is lead-acid batteries, which are used to provide off-grid solar energy in developing countries. However, modelling of this technology has fallen behind other types of battery; the state-of-the-art models are either overly simplistic, fitting black-box functions to current and voltage data, or overly complicated, requiring complex and time-consuming numerical simulations. Neither of these methods offers great insight into the chemical behaviour at the micro-scale.

In our research, we use asymptotic methods to explore the Newman porous-electrode model for a constant-current discharge at low current densities, a good estimate for real-life applications. In this limit, we obtain a simple yet accurate formula for the cell voltage as a function of current density and time. We also gain quantitative insight into the effect of various parameters on this voltage. Further, our model allows us to quantitatively investigate the effect of ohmic resistance and mass transport limitations, as a correction to the leading order cell voltage. Finally, we explore the effect on cell voltage of other secondary phenomena, such as growth of a discharge-product layer in the pores and reaction-induced volume changes in the electrolyte.

Tue, 13 Jun 2017

12:00 - 13:15
L4

Dark Matter Decay?  Possible Observational Tests—According to CCC

Roger Penrose
Abstract

In the cosmological scheme of conformal cyclic cosmology (CCC), the equations governing the crossover form each aeon to the next demand the creation of a dominant new scalar material that is postulated to be dark matter. In order that this material does not build up from aeon to aeon, it is taken to decay away completely over the history of the aeon. The dark matter particles (erebons) would be expected to behave as essentially classical particles of around a Planck mass, interacting only gravitationally, and their decay would be mainly responsible for the (~scale invariant)

temperature fluctuations in the CMB of the succeeding aeon. In our own aeon, erebon decay ought to be detectable as impulsive events observable by gravitational wave detectors.

Mon, 12 Jun 2017

16:30 - 17:30
L5

The stability of contact lines in fluids

Ian Tice
(Carnegie Mellon Univeristy)
Abstract

The contact line problem in interfacial fluid mechanics concerns the triple-junction between a fluid, a solid, and a vapor phase. Although the equilibrium configurations of contact lines have been well-understood since the work of Young, Laplace, and Gauss, the understanding of contact line dynamics remains incomplete and is a source of work in experimentation, modeling, and mathematical analysis. In this talk we consider a 2D model of contact point (the 2D analog of a contact line) dynamics for an incompressible, viscous, Stokes fluid evolving in an open-top vessel in a gravitational field. The model allows for fully dynamic contact angles and points. We show that small perturbations of the equilibrium configuration give rise to global-in-time solutions that decay to equilibrium exponentially fast.  This is joint with with Yan Guo.

Mon, 12 Jun 2017

15:45 - 16:45
L6

Are CAT(0) spaces determined by their boundaries?

Ruth Charney
(Brandeis University)
Abstract

Boundaries of hyperbolic spaces have played a key role in low dimensional topology and geometric group theory.  In 1993, Paulin showed that the topology of the boundary of a (Gromov) hyperbolic space, together with its quasi-mobius structure, determines the space up to quasi-isometry.  One can define an analogous boundary, called the Morse boundary, for any proper geodesic metric space.  I will discuss an analogue of Paulin’s theorem for Morse boundaries of CAT(0) spaces. (Joint work with Devin Murray.)

Mon, 12 Jun 2017

15:45 - 16:45
L3

A weak universality result for the parabolic Anderson model

NICOLAS PERKOWSKI
(HU Berlin)
Abstract

We consider a class of nonlinear population models on a two-dimensional lattice which are influenced by a small random potential, and we show that on large temporal and spatial scales the population density is well described by the continuous parabolic Anderson model, a linear but singular stochastic PDE. The proof is based on a discrete formulation of paracontrolled distributions on unbounded lattices which is of independent interest because it can be applied to prove the convergence of a wide range of lattice models. This is joint work with Jörg Martin.

Mon, 12 Jun 2017

15:30 - 16:30
L5

The global attractor for autonomous quasi-geostrophic equations with fractional dissipation in $\mathbb{R}^2$

Reinhard Farwig
(Technische Universitat Darmstadt)
Abstract

Reinhard Farwig and Chenyin Qian

 

Consider the autonomous quasi-geostrophic equation with fractional dissipation in $\mathbb{R}^2$
  \begin{equation} \label{a}
 \theta_t+u\cdot\nabla\theta+(-\Delta)^{\alpha}\theta=f(x,\theta)
 \end{equation}
in the subcritical case $1/2<\alpha\leq1$, with initial condition $\theta(x, 0)= \theta^{0}$ and given external force $f(x,\theta)$. Here the real scalar function $\theta$ is the so-called potential temperature, and the incompressible velocity field $u=(u_1,u_2)=(-\mathcal {R}_2\theta,\mathcal {R}_1\theta)$ is determined from $\theta$ via Riesz operators.  Our aim is to prove the existence of the compact global attractor $\mathcal{A}$ in the Bessel potential space $H^s(\mathbb{R}^2)$ when $s>2(1-\alpha)$.

The  construction of the attractor is based on the existence of an absorbing set in $L^2(\mathbb{R}^2)$ and $H^s(\mathbb{R}^2)$ where $s>2(1-\alpha)$. A second major step is usually based on compact Sobolev embeddings which unfortunately do not hold for unbounded domains. To circumvent this problem we exploit compact Sobolev embeddings on  balls $B_R \subset \mathbb{R}^2$ and uniform smallness estimates of solutions on $\mathbb{R}^2 \setminus B_R$. In the literature the latter estimates are obtained by a damping term $\lambda\theta$, $\lambda<0$, as part of the right hand side $f$ to guarantee exponential decay estimates. In our approach we exploit a much weaker nonlocal damping term of convolution type $\rho*\theta$ where $\widehat \rho<0$. 

Mon, 12 Jun 2017

14:15 - 15:15
L4

Mapping Class Group Actions on Moduli Spaces and the Teichmueller Flow

Bill Goldman
(University of Maryland)
Abstract

We describe a general program for the classification of flat connections on topological manifolds. This is motivated by the classification of locally homogeneous geometric structures on manifolds, in the spirit of Ehresmann and Thurston.  This leads to interesting dynamical systems arising from mapping class group actions on character varieties. The mapping class group action is a discrete version of a continuous object, namely the extension of the Teichmueller flow to a  unversal character variety over over the tangent bundle of Teichmuller space. We give several examples of this construction
and discuss joint work with Giovanni Forni on a mixing property of this suspended flow.

Mon, 12 Jun 2017
12:45
L3

CANCELLED

Shehryar Sikander
(Abdus Salam ICTP)
Fri, 09 Jun 2017

16:00 - 17:00
L1

The cover of the December AMS Notices

Caroline Series
(University of Warwick)
Abstract

The cover of the December 2016 AMS Notices shows an eye-like region picked out by blue and red dots and surrounded by green rays. The picture, drawn by Yasushi Yamashita, illustrates Gaven Martin’s search for the smallest volume 3-dimensional hyperbolic orbifold. It represents a family of two generator groups of isometries of hyperbolic 3-space which was recently studied, for quite different reasons, by myself, Yamashita and Ser Peow Tan.

After explaining the coloured dots and their role in Martin’s search, we concentrate on the green rays. These are Keen-Series pleating rays which are used to locate spaces of discrete groups. The theory also suggests why groups represented by the red dots on the rays in the inner part of the eye display some interesting geometry.
 

Fri, 09 Jun 2017

14:00 - 15:00
L3

From estimating motion to monitoring complex behaviour in cellular systems

Professor Jens Rittscher
(Dept of Engineering Science University of Oxford)
Abstract

Building on advancements in computer vision we now have an array of visual tracking methods that allow the reliable estimation of cellular motion in high-throughput settings as well as more complex biological specimens. In many cases the underlying assumptions of these methods are still not well defined and result in failures when analysing large scale experiments.

Using organotypic co-culture systems we can now mimic more physiologically relevant microenvironments in vitro.  The robust analysis of cellular dynamics in such complex biological systems remains an open challenge. I will attempt to outline some of these challenges and provide some very preliminary results on analysing more complex cellular behaviours.

Fri, 09 Jun 2017

13:00 - 14:00
L6

Structure of martingale transports in finite dimensions

Pietro Siorpaes
(Imperial College)
Abstract


Martingale optimal transport is a variant of the classical optimal transport problem where a martingale constraint is imposed on the coupling. In a recent paper, Beiglböck, Nutz and Touzi show that in dimension one there is no duality gap and that the dual problem admits an optimizer. A key step towards this achievement is the characterization of the polar sets of the family of all martingale couplings. Here we aim to extend this characterization to arbitrary finite dimension through a deeper study of the convex order

 

Fri, 09 Jun 2017

11:00 - 12:00
C3

A homotopy exact sequence for overconvergent isocrystals

Ambrus Pal
(Imperial College)
Abstract

I will explain how to prove the exactness of the homotopy sequence of overconvergent p-adic fundamental groups for a smooth and projective morphism in characteristic p. We do so by first proving a corresponding result for rigid analytic varieties in characteristic 0, following dos Santos in the algebraic case. In characteristic p we proceed by a series of reductions to the case of a liftable family of curves, where we can apply the rigid analytic result. Joint work with Chris Lazda.

Fri, 09 Jun 2017

10:00 - 11:00
L4

Some mathematical problems in data science of interest to NPL

Stephane Chretien
(National Physical Laboratory)
Abstract

The National Physical Laboratory is the national measurement institute. Researchers in the Data Science Division analyse various types of data using mathematical, statistical and machine learning based methods. The goal of the workshop is to describe a set of exciting mathematical problems that are of interest to NPL and more generally to the Data Science community. In particular, I will describe the problem of clustering using minimum spanning trees (MST-Clustering), Non-Negative Matrix Factorisation (NMF), adaptive Compressed Sensing (CS) for tomography, and sparse polynomial chaos expansion (PCE) for parametrised PDE’s.

Fri, 09 Jun 2017

10:00 - 11:00
N3.12

Primitive ideals in the affinoid enveloping algebra of a semisimple Lie Algebra

Ioan Stanciu
(University of Oford)
Abstract
We consider a discrete valuation ring R with field of fraction K and residue field k and a group scheme G connected, simply connected, split semisimple, affine algebraic group scheme over R with Lie algebra g_R. One defines the affinoid enveloping algebra to be the inverse limit of the standard enveloping algebra with respect to the \pi-adic filtration tensored with K. One would like a classification of the primitive spectrum of this ring. In this talk, I will define the affinoid Verma modules and show that they are "controlled" by the standard Verma modules. I will also explain the main difficulty of extending Dufflo's theorem which classifies the primitive spectrum of the standard enveloping algebra.
Thu, 08 Jun 2017
17:30
L6

On the differential Dixmier-Moeglin equivalence.

Omar Leon Sanchez
(Manchester)
Abstract

Motivated by the Dixmier-Moeglin equivalence, which belongs to the realm of algebra representations, we look at a differential version of this equivalence for algebraic D-groups, which belong to the realm of finite Morley rank groups in differentially closed fields. We will see how the proof of this equivalence reduces to a standard model-theoretic fact (on binding groups). Time permitting we will present an application to Hopf-Ore extensions. This is joint work with J. Bell and R. Moosa.

Thu, 08 Jun 2017
16:00
L6

Better than squareroot cancellation for multiplicative functions

Adam Harper
(Warwick)
Abstract

It is a standard heuristic that sums of oscillating number theoretic functions, like the M\"obius function or Dirichlet characters, should exhibit squareroot cancellation. It is often very difficult to prove anything as strong as that, and we generally expect that if we could prove squareroot cancellation it would be the best possible bound. I will discuss recent results showing that, in fact, certain averages of multiplicative functions exhibit a bit more than squareroot cancellation.

Thu, 08 Jun 2017

16:00 - 17:00
L3

Population Dispersal in Spatially Structured Domains & Modelling and computation for compacting sedimentary basins

Andrew Krause, Jane Lee
(Oxford University)
Abstract

Understanding the spatial distribution of organisms throughout an environment is an important topic in population ecology. We briefly review ecological questions underpinning certain mathematical work that has been done in this area, before presenting a few examples of spatially structured population models. As a first example, we consider a model of two species aggregation and clustering in two-dimensional domains in the presence of heterogeneity, and demonstrate novel aggregation mechanisms in this setting. We next consider a second example consisting of a predator-prey-subsidy model in a spatially continuous domain where the spatial distribution of the subsidy influences the stability and spatial structure of steady states of the system. Finally, we discuss ongoing work on extending such results to network-structured domains, and discuss how and when the presence of a subsidy can stabilize predator-prey dynamics."

-------------------------------------------------------------------------------------------------------------------------------

Compaction is a primary process in the evolution of a sedimentary basin. Various 1D models exist to model a basin compacting due to overburden load. We explore a multi-dimensional model for a basin undergoing mechanical and chemical compaction. We discuss some properties of our model. Some test cases in the presence of geological features are considered, with appropriate numerical techniques presented.

Thu, 08 Jun 2017

16:00 - 17:30
L2

LSM Reloaded - Differentiate xVA on your iPad Mini

Antoine Savine
(Danske Bank)
Abstract

This document reviews the so called least square methodology (LSM) and its application for the valuation and risk of callable exotics and regulatory value adjustments (xVA). We derive valuation algorithms for xVA, both with or without collateral, that are particularly accurate, efficient and practical. These algorithms are based on a reformulation of xVA, designed by Jesper Andreasen and implemented in Danske Bank's award winning systems, that hasn't been previously published in full. We then investigate the matter of risk sensitivities, in the context of Algorithmic Automated Differentiation (AAD). A rather recent addition to the financial mathematics toolbox, AAD is presently generally acknowledged as a vastly superior alternative to the classical estimation of risk sensitivities through finite differences, and the only practical means for the calculation of the large number of sensitivities in the context of xVA. The theory and implementation of AAD, the related check-pointing techniques, and their application to Monte-Carlo simulations are explained in numerous textbooks and articles, including Giles and Glasserman's pioneering Smoking Adjoints. We expose an extension to LSM, and, in particular, we derive an original algorithm that resolves the matters of memory consumption and efficiency in differentiating simulations together with the LSM step.

Thu, 08 Jun 2017

14:00 - 15:00
L2

Gaussian quadrature the Gaussian way

Prof. J. M. Sanz-Serna
(University of Madrid Carlos III)
Abstract


Gauss invented Gaussian quadrature following an approach entirely different from the one we now find in textbooks. I will describe leisurely the contents of Gauss's original memoir on quadrature, an impressive piece of mathematics, based on continued fractions, Padé approximation, generating functions, the hypergeometric series and more.

Thu, 08 Jun 2017
12:00
L4

DIVERGENCE-MEASURE FIELDS: GENERALIZATIONS OF GAUSS-GREEN FORMULA

GIOVANNI COMI
(Scuola Normale Superiore di Pisa)
Abstract

Divergence-measure fields are $L^{p}$-summable vector fields on $\mathbb{R}^{n}$ whose divergence is a Radon measure. Such vector fields form a new family of function spaces, which in a sense generalize the $BV$ fields, and were introduced at first by Anzellotti, before being rediscovered in the early 2000s by many authors for different purposes.
Chen and Frid were interested in the applications to the theory of systems of conservation laws with the Lax entropy condition and achieved a Gauss-Green formula for divergence-measure fields, for any $1 \le p \le \infty$, on open bounded sets with Lipschitz deformable boundary. We show in this talk that any Lipschitz domain is deformable.
Later, Chen, Torres and Ziemer extended this result to the sets of finite perimeter in the case $p = \infty$, showing in addition that the interior and exterior normal traces of the vector field are essentially bounded functions.
The Gauss-Green formula for $1 \le p \le \infty$ has been also studied by Silhavý on general open sets, and by Schuricht on compact sets. In such cases, the normal trace is not in general a summable function: it may even not be a measure, but just a distribution of order 1. However, we can show that such a trace is the limit of the integral of classical normal traces on (smooth) approximations of the integration domain.

Thu, 08 Jun 2017
11:00
L6

Modular Andre-Oort with Derivatives - Recent Developments

Haden Spence
Abstract

 I will discuss my ongoing project towards a version of the Modular Andre-Oort Conjecture incorporating the derivatives of the j function.  The work originates with Jonathan Pila, who formulated the first "Modular Andre-Oort with Derivatives" conjecture.  The problem can be approached via o-minimality; I will discuss two categories of result.  The first is a weakened version of Jonathan's conjecture.  Under an algebraic independence conjecture (of my own, though it follows from standard conjectures), the result is equivalent to the statement that Jonathan's conjecture holds.  
The second result is conditional on the same algebraic independence conjecture - it specifies more precisely how the special points in varieties can occur in this context.  
If time permits, I will discuss my most recent work towards making the two results uniform in algebraic families.

Wed, 07 Jun 2017
15:00

Direct Anonymous Attestation: From 2003 to 2017

Jan Camenisch
(IBM Research)
Abstract

Direct Anonymous Attestation (DAA) is a protocol that allows a security chip embedded in a platform such as laptop to authenticate itself as a genuine chip.  Different authentications are not linkeable, thus the protocol protects the privacy of the platform. The first DAA protocol was proposed by Brickell, Chen, and Camenisch and was standardized in 2004 by the Trusted Computing Group (TCG). Implementations of this protocols were rather slow because it is based on RSA. Later, alternative and faster protocols were proposed based on elliptic curves. Recently the specification by the TCG was updated to allow for DAA protocols based on elliptic curves. Unfortunately, the new standard does not allow for provably secure DAA protocols. In this talk, we will review some of the history of DAA and  then discuss the latest protocols, security models, and finally a provably secure realization of DAA based on elliptic curves.

Wed, 07 Jun 2017

11:30 - 12:30
N3.12

TBC

Kieran Calvert
Tue, 06 Jun 2017
14:30
L6

Monochromatic Infinite Sumsets

Paul Russell
(Cambridge)
Abstract

It is well known that there is a finite colouring of the natural numbers such that there is no infinite set X with X+X (the pairwise sums from X, allowing repetition) monochromatic. It is easy to extend this to the rationals. Hindman, Leader and Strauss showed that there is also such a colouring of the reals, and asked if there exists a space 'large enough' that for every finite colouring there does exist an infinite X with X+X monochromatic. We show that there is indeed such a space. Joint work with Imre Leader.