Mon, 10 Jun 2019

14:15 - 15:15
L3

Gibbs measures of nonlinear Schrodinger equations as limits of many-body quantum states

VEDRAN SOHINGER
(University of Warwick)
Abstract

Gibbs measures of nonlinear Schrödinger equations are a fundamental object used to study low-regularity solutions with random initial data. In the dispersive PDE community, this point of view was pioneered by Bourgain in the 1990s. We study the problem of the derivation of Gibbs measures as high-temperature limits of thermal states in many-body quantum mechanics.

In our work, we apply a perturbative expansion in the interaction. This expansion is then analysed by means of Borel resummation techniques. In two and three dimensions, we need to apply a Wick-ordering renormalisation procedure. Moreover, in one dimension, our methods allow us to obtain a microscopic derivation of the time-dependent correlation functions for the cubic nonlinear Schrödinger equation. This is based partly on joint work with Jürg Fröhlich, Antti Knowles, and Benjamin Schlein.

Mon, 10 Jun 2019

14:15 - 15:15
L4

Moduli of polarised varieties via canonical Kähler metrics

Ruadhai Dervan
(Cambridge)
Abstract

Moduli spaces of polarised varieties (varieties together with an ample line bundle) are not Hausdorff in general. A basic goal of algebraic geometry is to construct a Hausdorff moduli space of some nice class of polarised varieties. I will discuss how one can achieve this goal using the theory of canonical Kähler metrics. In addition I will discuss some fundamental properties of this moduli space, for example the existence of a Weil-Petersson type Kähler metric. This is joint work with Philipp Naumann.

Mon, 10 Jun 2019
12:45
L3

Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula

Masazumi Honda
(Cambridge University)
Abstract

I will talk about supersymmetric index of 4d N=1 supersymmetric theories on S^1xM_3 which counts supersymmetric states.  
In the first part, I will discuss a general formula to describe an asymptotic behaviour of the index in the limit of shrinking S^1
which we refer to as 4d (refined) supersymmetric Cardy formula. This part is based on arXiv:1611.00380 with Lorenzo Di Pietro.
In the second part, I will apply this formula to black hole physics. I will mainly focus on superconformal index of SU(N) N=4 super Yang-Mills theory
which is expected to be dual to type IIB superstring theory on AdS_5 x S^5. We will see that the index in the large-N limit reproduces the Bekenstein-Hawking entropy
of rotating charged BPS black hole on the gravity side. Our result for finite N makes a prediction to the black hole entropy with full quantum corrections.
The second part is based on arXiv:1901.08091.

Fri, 07 Jun 2019
16:00
L1

Optimal control of multiphase fluids and droplets

Michael Hintermueller
(Humboldt)
Abstract

Solidification processes of liquid metal alloys,  bubble dynamics (as in Taylor flows), pinch-offs of liquid-liquid jets, the formation of polymeric membranes, or the structure of high concentration photovoltaic cells are described by the dynamics of multiphase fluids. On the other hand, in applications such as mass spectrometry, lab-on-a-chip, and electro-fluidic displays, fluids on the micro-scale associated with a dielectric medium are of interest. Moreover, in many of these applications one is interested in influencing (or controlling) the underlying phenomenon in order to reach a desired goal. Examples for the latter could be the porosity structure of a polymeric membrane to achieve certain desired filtration properties of the membrane, or to optimize a microfluidic device for the transport of pharmaceutical agents.

A promising mathematical model for the behavior of multiphase flows associated with the applications mentioned above is given by a phase-field model of Cahn-Hilliard / Navier-Stokes (CHNS) type. Some strengths of phase field (or diffuse interface) approaches are due to their ability to overcome both, analytical difficulties of topological changes, such as, e.g., droplet break-ups or the coalescence of interfaces, and numerical challenges in capturing the interface dynamics between the fluid phases. Deep quenches in solidification processes of liquid alloys or rapid wall hardening in the formation of polymer membranes ask for non-smooth energies in connection with Cahn-Hilliard models. Analytically, this gives rise to a variational inequality coupled to the equations of hydrodynamics, thus yielding a non-smooth system (in the sense that the map associated with the underlying operator equation is not necessarily Frechet differentiable). In contrast to phase-field approaches,
one may consider sharp interface models. In view of this, our microfluidic applications alluded to above are formulated in terms of  sharp interface models and Hele-Shaw flows. In this context, we are particularly interested in applications of electrowetting on dielectric (EWOD) with contact line pinning. The latter phenomenon resembles friction, yields a variational inequality of the second kind, and – once again – it results in an overall nonsmooth mathematical model of the physical process.

   In both settings described above, optimal control problems are relevant in order to influence the underlying physical process to approach a desired system state.  The associated optimization problems are delicate as the respective constraints involve non-smooth structures which render the problems degenerate and prevent a direct application of sophisticated tools for the characterization of solutions. Such characterizations are, however, of paramount importance in the design of numerical solution schemes.

This talk addresses some of the analytical challenges associated with optimal control problems involving non-smooth structures, offers pathways to solutions, and it reports on numerical results for both problem classes introduced above.
 

Fri, 07 Jun 2019

15:00 - 15:30
N3.12

Persistence Paths and Signature Features in Topological Data Analysis

Ilya Chevyrev
((Oxford University))
Abstract

In this talk I will introduce the concept of the path signature and motivate its recent use in analysis of time-ordered data. I will then describe a new feature map for barcodes in persistent homology by first realizing each barcode as a path in a vector space, and then computing its signature which takes values in the tensor algebra over that vector space. The composition of these two operations — barcode to path, path to tensor series — results in a feature map that has several desirable properties for statistical learning, such as universality and characteristicness.

Fri, 07 Jun 2019

14:00 - 15:00
L3

Mechanobiology of cell migration: mathematical modelling and microfluidics-based experiments go hand-in-hand

Dr Jose Manuel Garcia Aznar
(Dept of Mechanical Engineering University of Zaragoza)
Abstract

Mechanobiology is a field of science that aims to understand how mechanics regulate biology. It focuses on how mechanical forces and alterations in mechanical properties of cell or tissues regulate biological processes in development, physiology and disease. In fact, all these processes occur in our body, which presents a clear structural and hierarchical organization that goes from the organism to the cellular level. To advance in the understanding of all these processes at different scales requires the use of simplified representations of our body, which is normally known as modelling or equivalently the creation of a model. Different types of models can be found in the literature: in-vitro, in-vivo and in-silico models.

Here, I will present our modelling strategy in which we integrate different mathematical models and experiments in order to tackle relevant mechanical-based mechanisms in wound healing and cancer metastasis progression [1,2]. In fact, we have focused our research on individual [3] and collective cell migration [4], because it is a crucial event in all these mechanisms. Therefore, unravelling the intrinsic mechanisms that cells use to define their migration is an essential element for advancing the development of new technologies in regenerative medicine and cancer.

Due to the complexity of all these mechanisms, mathematical modelling is a relevant tool for providing deeper insight and quantitative predictions of the mechanical interplay between cells and extracellular matrix during cell migration. To assess the predictive capacity of these models, we will compare our numerical results with microfluidic-based experiments [2], which provide experimental information to test and refine the main assumptions of our models.

Actually, we design and fabricate multi-channel 3D microfluidics cell culture chips, which allow recreating the physiology and disease of one organ or any biological process with a precise control of the micro environmental factors [5]. Therefore, this kind of organ-on-a-chip experiments constitutes a novel modelling strategy of in vitro multicellular human systems that in combination with mathematical simulations provide a relevant tool for research in mechanobiology.

References

Escribano J, Chen M, Moeendarbary E, Cao X, Shenoy V, Garcia-Aznar JM, Kamm RD, Spill F.  Balance of Mechanical Forces Drives Endothelial Gap Formation and May Facilitate Cancer and Immune-Cell Extravasation. PLOS Computational Biology, in press.

Fri, 07 Jun 2019

14:00 - 15:30
L6

The strange instability of the equatorial Kelvin wave

Dr. Stephen Griffiths
(University of Leeds)
Abstract

The Kelvin wave is perhaps the most important of the equatorially trapped waves in the terrestrial atmosphere and ocean, and plays a role in various phenomena such as tropical convection and El Nino. Theoretically, it can be understood from the linear dynamics of a stratified fluid on an equatorial beta plane, which, with simple assumptions about the disturbance structure, leads to wavelike solutions propagating along the equator, with exponential decay in latitude. However, when the simplest possible background flow is added (with uniform latitudinal shear), the Kelvin wave (but not the other equatorial waves) becomes unstable. This happens in an extremely unusual way: there is instability for arbitrarily small nondimensional shear p, and the growth rate is proportional to exp(-1/p^2) as p->0. This in contrast to most hydrodynamic instabilities, in which the growth rate typically scales as a positive power of p-p_c as the control parameter p passes through a critical value p_c.

This Kelvin wave instability has been established numerically by Natarov and Boyd, who also speculated as to the underlying mathematical cause. Here we show how the growth rate and full spatial structure of the instability may be derived using matched asymptotic expansions applied to the (linear) equations of motion. This involves an adventure with Whittaker functions in the exponentially-decaying tails of the Kelvin waves, and a trick to reveal the exponentially small growth rate from a formulation that only uses regular perturbation expansions. Numerical verification of the analysis is also interesting and challenging, since special high-precision solutions of the governing ODE are required even when the nondimensional shear is not that small (circa 0.5).

Fri, 07 Jun 2019

12:00 - 13:00
L4

Finding and Imposing Qualitative Properties in Data

Primoz Skraba
(Queen Mary University of London)
Abstract

Data analysis techniques are often highly domain specific - there are often certain patterns which should be in certain types of data but may not be apparent in data. The first part of the talk will cover a technique for finding such patterns through a tool which combines visual analytics and machine learning to provide insight into temporal multivariate data. The second half of the talk will discuss recent work on imposing high level geometric  structure into continuous optimizations including deep neural networks.
 

Fri, 07 Jun 2019

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Victoria Pereira, Ana Osojnik, Ambrose Yim, Isabelle Scott
(Mathematical Institute)
Thu, 06 Jun 2019

16:00 - 17:00
L6

A non-abelian algebraic criterion for good reduction of curves

Valentina DiProietto
(University of Exeter)
Abstract


For a family of proper hyperbolic complex curves $f: X \longrightarrow \Delta^*$ over a puntured disc $\Delta^*$ with semistable reduction at the center, Oda proved, with transcendental methods, that the outer monodromy action of $\pi_1(\Delta^*) \cong \mathbb{Z}$ on the classical unipotent fundamental group of the generic fiber of $f$ is trivial if and only if $f$ has good reduction at the center. In this talk I explain a joint work with B. Chiarellotto and A. Shiho in which we give a purely algebraic proof of Oda's result.

Thu, 06 Jun 2019
16:00
C4

Equivariant Topological Quantum Field Theories

Thomas Wasserman
(University of Copenhagen)
Abstract

Topological quantum field theories (TQFTs) are an extensively studied scheme for constructing invariants of manifolds, inspired by physics. In this talk, we will discuss a particular flavour of TQFT, where we equip our manifolds with principal bundles for some finite group. After introducing TQFTs and this particular flavour, I will discuss games one can play with these TQFTs, and a possible strategy for classifying equivariant TQFTs in three dimensions. 

Thu, 06 Jun 2019

16:00 - 17:30
L4

tba

tba
Thu, 06 Jun 2019

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Parallel numerical algorithms for resilient large scale simulations

Dr Mawussi Zounon
(Numerical Algorithms Group & University of Manchester)
Abstract

As parallel computers approach Exascale (10^18 floating point operations per second), processor failure and data corruption are of increasing concern. Numerical linear algebra solvers are at the heart of many scientific and engineering applications, and with the increasing failure rates, they may fail to compute a solution or produce an incorrect solution. It is therefore crucial to develop novel parallel linear algebra solvers capable of providing correct solutions on unreliable computing systems. The common way to mitigate failures in high performance computing systems consists of periodically saving data onto a reliable storage device such as a remote disk. But considering the increasing failure rate and the ever-growing volume of data involved in numerical simulations, the state-of-the-art fault-tolerant strategies are becoming time consuming, therefore unsuitable for large-scale simulations. In this talk, we will present a  novel class of fault-tolerant algorithms that do not require any additional resources. The key idea is to leverage the knowledge of numerical properties of solvers involved in a simulation to regenerate lost data due to system failures. We will also share the lessons learned and report on the numerical properties and the performance of the new resilience algorithms.

Thu, 06 Jun 2019

12:00 - 13:00
L4

The geometry of measures solving a linear PDE

Adolfo Arroyo-Rabasa
(Dept. Mathematics, University of Warwick)
Abstract

Function solutions to linear PDEs often carry rigidity properties directly associated to the equation they satsify. However, the realm of solutions covers a much larger sets of solutions. For instance, we can speak of measure solutions, as opposed to classical $C^\infty$ functions or even $L^p$ functions. It is only logical to expect that the “better” space the solution lives in, the more rigid its properties will be.

Measure solutions lie just at a comfortable half of this threshold: it is a sufficently large space which allows for a rich range of new structures; but is sufficiently rigid to preserve a meaningful geometrical pattern. For example, have you ever wondered how gradients look like in the space of measures? What about other PDE structures? In this talk I will discuss these general questions, a few examples of them, and a new theoretical approach to its understanding via PDE theory, harmonic analysis, and geometric measure theory methods.

Thu, 06 Jun 2019
11:30
C4

The (non-uniform) Hrushovski-Lang-Weil estimates

Shuddhodan Kadattur Vasudevan
(Hebrew University Jerusalem Israel)
Abstract

In 1996 using techniques from model theory and intersection theory, Hrushovski obtained a generalisation of the Lang-Weil estimates. Subsequently the estimates have found applications in group theory, algebraic dynamics and algebraic geometry. We shall discuss a geometric proof of the non-uniform version of these estimates.

Wed, 05 Jun 2019
16:00
C1

Serre's property (FA) for automorphisms of free products

Naomi Andrew
(Southampton University)
Abstract

Property (FA) is one of the `rigidity properties’ defined for groups, concerning the way a group can act on trees. We’ll take a look at why you might be interested in an action on a tree, what the property is, and then investigate which automorphism groups of free products have it.

Tue, 04 Jun 2019

14:30 - 15:30
L6

Non-concentration of the chromatic number of G(n, 1/2)

Annika Heckel
Further Information

A classic result of Shamir and Spencer states that for any function $p=p(n)$, the chromatic number of $G(n,p)$ is whp concentrated on a sequence of intervals of length about $\sqrt{n}$. For $p<n^{-\frac{1}{2} -\epsilon}$, much more is known: here, the chromatic number is concentrated on two consecutive values.

Until now, there have been no non-trivial cases where $\chi(G(n,p))$ is known not to be extremely narrowly concentrated. In 2004, Bollob\'as asked for any such examples, particularly in the case $p=\frac{1}{2}$, in a paper in the problem section of CPC. 

In this talk, we show that the chromatic number of $G(n, 1/2)$ is not whp concentrated on $n^{\frac{1}{4}-\epsilon}$ values

Tue, 04 Jun 2019

14:30 - 15:00
L5

The dual approach to non-negative super-resolution: impact on primal reconstruction accuracy

Bogdan Toader
(Oxford)
Abstract

We study the problem of super-resolution using TV norm minimisation, where we recover the locations and weights of non-negative point sources from a few samples of their convolution with a Gaussian kernel. A practical approach is to solve the dual problem. In this talk, we study the stability of solutions with respect to the solutions to the dual problem. In particular, we establish a relationship between perturbations in the dual variable and the primal variables around the optimiser. This is achieved by applying a quantitative version of the implicit function theorem in a non-trivial way.

Tue, 04 Jun 2019
14:15
L4

Fourier-Mukai transforms for deformation quantization modules (joint work with David Gepner)

Francois Petit
(University of Luxembourg)
Abstract

Deformation quantization modules or DQ-modules where introduced by M. Kontsevich to study the deformation quantization of complex Poisson varieties. It has been advocated that categories of DQ-modules should provide invariants of complex symplectic varieties and in particular a sort of complex analog of the Fukaya category. Hence, it is natural to aim at describing the functors between such categories and relate them with categories appearing naturally in algebraic geometry. Relying, on methods of homotopical algebra, we obtain an analog of Orlov representation theorem for functors between categories of DQ-modules and relate these categories to deformations of the category of quasi-coherent sheaves.
 

Tue, 04 Jun 2019

14:00 - 14:30
L5

Decentralised Sparse Multi-Task Regression

Dominic Richards
(Oxford)
Abstract

We consider a sparse multi-task regression framework for fitting a collection of related sparse models. Representing models as nodes in a graph with edges between related models, a framework that fuses lasso regressions with the total variation penalty is investigated. Under a form of generalised restricted eigenvalue assumption, bounds on prediction and squared error are given that depend upon the sparsity of each model and the differences between related models. This assumption relates to the smallest eigenvalue restricted to the intersection of two cone sets of the covariance matrix constructed from each of the agents' covariances. In the case of a grid topology high-probability bounds are given that match, up to log factors, the no-communication setting of fitting a lasso on each model, divided by the number of agents.  A decentralised dual method that exploits a convex-concave formulation of the penalised problem is proposed to fit the models and its effectiveness demonstrated on simulations. (Joint work with Sahand Negahban and Patrick Rebeschini)

Tue, 04 Jun 2019

12:45 - 14:00
C3

Multiple scales analysis of a conductive-radiative thermal transfer model

Caoimhe Rooney
(University of Oxford)
Abstract


Multiple scales analysis is a powerful asymptotic technique for problems where the solution depends on two scales of widely different sizes. Standard multiple scales involves the introduction of a macroscale and microscale which are assumed to be independent. A common (and usually acceptable) assumption is that when considering behaviour on the microscale, the macroscale variable can be taken as constant, however there are instances where this assumption is not valid. In this talk, I will explain one such situation, that is, when considering conductive-radiative thermal transfer within a solid matrix with spherical perforations and discuss the appropriate measures when converting the radiative boundary condition into multiple-scales form.
 

Tue, 04 Jun 2019
12:00
L4

How Low Can the Energy Density Go?

Aron Wall
(Cambridge DAMTP)
Abstract

Quantum fields can sometimes have negative energy density.  In gravitational contexts, this threatens to permit both causality violations (such as traversable wormholes, warp drives, and time machines) and violations of the Second Law for black holes.  I will discuss the thermodynamic principles that rule out such pathological situations.  These principles have led us to an interesting lower bound on the energy flux, even for field theories in flat spacetime! This Quantum Null Energy Condition has now been proven for all relativistic field theories.  I will give an intuitive argument explaining why such ``quantum energy conditions'' ought to hold.