Tue, 05 Nov 2013

15:45 - 16:45
L4

Delooping and reciprocity

Michael Groechenig
(Imperial College, London)
Abstract

The Contou-Carrère symbol has been introduced in the 90's in the study of local analogues of autoduality of Jacobians of smooth projective curves. It is closely related to the tame symbol, the residue pairing, and the canonical central extension of loop groups. In this talk we will a discuss a K-theoretic interpretation of the Contou-Carrère symbol, which allows us to generalize this one-dimensional picture to higher dimensions. This will be achieved by studying the K-theory of Tate objects, giving rise to natural central extensions of higher loop groups by spectra. Using the K-theoretic viewpoint, we then go on to prove a reciprocity law for higher-dimensional Contou-Carrère symbols. This is joint work with O. Braunling and J. Wolfson.

Tue, 05 Nov 2013

14:30 - 15:00
L5

Pearcy's 1966 proof and Crouzeix's conjecture

L. Nick Trefethen
(University of Oxford)
Abstract

Crouzeix's conjecture is an exasperating problem of linear algebra that has been open since 2004: the norm of p(A) is bounded by twice the maximum value of p on the field of values of A, where A is a square matrix and p is a polynomial (or more generally an analytic function).  I'll say a few words about the conjecture and
show the beautiful proof of Pearcy in 1966 of a special case, based on a vector-valued barycentric interpolation formula.

Tue, 05 Nov 2013

14:30 - 15:30
L3

The Tutte polynomial: sign and approximability

Mark Jerrum
(University of London)
Abstract

The Tutte polynomial of a graph $G$ is a two-variable polynomial $T(G;x,y)$, which encodes much information about~$G$. The number of spanning trees in~$G$, the number of acyclic orientations of~$G$, and the partition function of the $q$-state Potts model are all specialisations of the Tutte polynomial. Jackson and Sokal have studied the sign of the Tutte polynomial, and identified regions in the $(x,y)$-plane where it is ``essentially determined'', in the sense that the sign is a function of very simple characteristics of $G$, e.g., the number of vertices and connected components of~$G$. It is natural to ask whether the sign of the Tutte polynomial is hard to compute outside of the regions where it is essentially determined. We show that the answer to this question is often an emphatic ``yes'': specifically, that determining the sign is \#P-hard. In such cases, approximating the Tutte polynomial with small relative error is also \#P-hard, since in particular the sign must be determined. In the other direction, we can ask whether the Tutte polynomial is easy to approximate in regions where the sign is essentially determined. The answer is not straightforward, but there is evidence that it often ``no''. This is joint work with Leslie Ann Goldberg (Oxford).

Tue, 05 Nov 2013

14:00 - 15:00
L4

Cycles of algebraic D-modules in positive characteristic II.

Chris Dodd
Abstract

I will explain some ongoing work on understanding algebraic D-moldules via their reduction to positive characteristic. I will define the p-cycle of an algebraic D-module, explain the general results of Bitoun and Van Den Bergh; and then discuss a new construction of a class of algebraic D-modules with prescribed p-cycle.

Tue, 05 Nov 2013

14:00 - 14:30
L5

Optimal domain splitting in Chebyshev collocation

Toby Driscoll
(University of Delaware)
Abstract
Chebfun uses a simple rule, essentially a binary search, to automatically split an interval when it detects that a piecewise Chebyshev polynomial representation will be more efficient than a global one. Given the complex singularity structure of the function being approximated, one can find an optimal splitting location explicitly. It turns out that Chebfun really does get the optimal location in most cases, albeit not in the most efficient manner. In cases where the function is expensive to evaluate, such as the solution to a differential equation, it can be preferable to use Chebyshev-Padé approximation to locate the complex singularities and split accordingly. 

 

Tue, 05 Nov 2013

13:15 - 14:00
C4

Introduction to Data Assimilation

Partick Raanes
(OCIAM, Oxford)
Abstract

Data assimilation is a particular form of state estimation. That's partly the "what". We'll also look at the how's, the why's, some who's and some where's.

Mon, 04 Nov 2013

15:45 - 16:45
Oxford-Man Institute

On interacting strong urns

Vlada Limic
(Universite Paris Sud)
Abstract

The talk will recall the results of three preprints, first two authored by my former student Mickael Launay, and the final coauthored by Mickael and myself. All three works are available on arXiv. At this point it is not clear that they will ever get published (or submitted for review) but hopefully this does not make their contents less interesting. This class of interacting urn processes was introduced in Launay's thesis, in an attempt to model more realistically the memory sharing that occurs in food trail pheromone marking or in similar collective learning phenomena. An interesting critical behavior occurs already in the case of exponential reinforcement. No prior knowledge of strong urns will be assumed, and I will try to explain the reason behind the phase transition.

Mon, 04 Nov 2013

14:15 - 15:15
Oxford-Man Institute

Coalescing flows: a new approach

Nathanael Berestycki
(University of Cambridge)
Abstract

The coalescing Brownian flow on $\R$ is a process which was introduced by Arratia (1979) and Toth and Werner (1997), and which formally corresponds to starting coalescing Brownian motions from every space-time point. We provide a new state space and topology for this process and obtain an invariance principle for coalescing random walks. The invariance principle holds under a finite variance assumption and is thus optimal. In a series of previous works, this question was studied under a different topology, and a moment of order $3-\eps$ was necessary for the convergence to hold. Our proof relies crucially on recent work of Schramm and Smirnov on scaling limits of critical percolation in the plane. Our approach is sufficiently simple that we can handle substantially more complicated coalescing flows with little extra work -- in particular similar results are obtained in the case of coalescing Brownian motions on the Sierpinski gasket. This is the first such result where the limiting paths do not enjoy the non-crossing property.

Joint work with Christophe Garban (Lyon) and Arnab Sen (Minnesota).

Mon, 04 Nov 2013
14:00
C6

D-spaces: (1) Extent and Lindelöf numbers

Robert Leek
(Oxford)
Abstract

This is the first of a series of talks based on Gary 
Gruenhage's 'A survey of D-spaces' [1]. A space is D if for every 
neighbourhood assignment we can choose a closed discrete set of points 
whose assigned neighbourhoods cover the space. The mention of 
neighbourhood assignments and a topological notion of smallness (that 
is, of being closed and discrete) is peculiar among covering properties. 
Despite being introduced in the 70's, we still don't know whether a 
Lindelöf or a paracompact space must be D. In this talk, we will examine 
some elementary properties of this class via extent and Lindelöf numbers.

Mon, 04 Nov 2013
14:00
L5

4D Einstein equations as a gauge theory

Joel Fine
(UL Brussels)
Abstract

I will explain a new formulation of Einstein’s equations in 4-dimensions using the language of gauge theory. This was also discovered independently, and with advances, by Kirill Krasnov. I will discuss the advantages and disadvantages of this new point of view over the traditional "Einstein-Hilbert" description of Einstein manifolds. In particular, it leads to natural "sphere conjectures" and also suggests ways to find new Einstein 4-manifolds. I will describe some first steps in these directions. Time permitting, I will explain how this set-up can also be seen via 6-dimensional symplectic topology and the additional benefits that brings.

Mon, 04 Nov 2013

12:00 - 13:00
L5

Global Properties of Supergravity Solutions

Jan Gutowski
(Surrey)
Abstract
Recent progress has been made in the analysis of supergravity solutions. It can be shown that for a large class of solutions, the conditions imposed by supersymmetry are equivalent to determining the zero modes of various types of Dirac operators, by an extension of the classical Lichnerowicz theorem. Hence the number of supersymmetries are constrained by index theory. For near-horizon black hole geometries, this mechanism produces symmetry enhancement.
Fri, 01 Nov 2013

14:00 - 15:00
L5

Design principles and dynamics in clocks, cell cycles and signals

Professor David Rand
(University of Warwick)
Abstract

I will discuss two topics. Firstly, coupling of the circadian clock and cell cycle in mammalian cells. Together with the labs of Franck Delaunay (Nice) and Bert van der Horst (Rotterdam) we have developed a pipeline involving experimental and mathematical tools that enables us to track through time the phase of the circadian clock and cell cycle in the same single cell and to extend this to whole lineages. We show that for mouse fibroblast cell cultures under natural conditions, the clock and cell cycle phase-lock in a 1:1 fashion. We show that certain perturbations knock this coupled system onto another periodic state, phase-locked but with a different winding number. We use this understanding to explain previous results. Thus our study unravels novel phase dynamics of 2 key mammalian biological oscillators. Secondly, I present a radical revision of the Nrf2 signalling system. Stress responsive signalling coordinated by Nrf2 provides an adaptive response for protection against toxic insults, oxidative stress and metabolic dysfunction. We discover that the system is an autonomous oscillator that regulates its target genes in a novel way.

Fri, 01 Nov 2013

10:00 - 11:00
L5

TBA

Svenn Anton Halvorsen, Teknova
(Teknova)
Thu, 31 Oct 2013

17:15 - 18:15
L6

Positive characteristic version of Ax's theorem

Piotr Kowalski
(Wroclaw)
Abstract

Ax's theorem on the dimension of the intersection of an algebraic subvariety and a formal subgroup (Theorem 1F in "Some topics in differential algebraic geometry I...") implies Schanuel type transcendence results for a vast class of formal maps (including exp on a semi-abelian variety). Ax stated and proved this theorem in the characteristic 0 case, but the statement is meaningful for arbitrary characteristic and still implies positive characteristic transcendence results. I will discuss my work on positive characteristic version of Ax's theorem.

Thu, 31 Oct 2013

16:00 - 17:30
C6

D-modules: PDEs, flat connections, and crystals

Emily Cliff
Abstract

Motivated by the study of PDEs, we introduce the notion of a D-module on a variety X and give the basics of three perspectives on the theory: modules over the sheaf of differential operators on X; quasi-coherent modules with flat connection; and crystals on X. This talk will assume basic knowledge of algebraic geometry (such as rudimentary sheaf theory).

Thu, 31 Oct 2013

16:00 - 17:00
L3

Coherent Lagrangian vortices: The black holes of turbulence

George Haller
(ETH Zurich)
Abstract

We discuss a simple variational principle for coherent material vortices

in two-dimensional turbulence. Vortex boundaries are sought as closed

stationary curves of the averaged Lagrangian strain. We find that

solutions to this problem are mathematically equivalent to photon spheres

around black holes in cosmology. The fluidic photon spheres satisfy

explicit differential equations whose outermost limit cycles are optimal

Lagrangian vortex boundaries. As an application, we uncover super-coherent

material eddies in the South Atlantic, which yield specific Lagrangian

transport estimates for Agulhas rings. We also describe briefly coherent

Lagrangian vortex detection to three-dimensional flows.

Thu, 31 Oct 2013

14:00 - 15:00
L4

Cluster combinatorics and geometrical models (part I)

Lisa Lamberti
(Oxford)
Abstract

In this talk I will give a definition of cluster algebra and state some main results.

Moreover, I will explain how the combinatorics of certain cluster algebras can be modeled in geometric terms.

Thu, 31 Oct 2013

14:00 - 15:00
L5

Don't be afraid of the 1001st (numerical) derivative

Professor Folkmar Bornemann
(Technical University Munich)
Abstract

The accurate and stable numerical calculation of higher-order

derivatives of holomorphic functions (as required, e.g., in random matrix

theory to extract probabilities from a generating function) turns out to

be a surprisingly rich topic: there are connections to asymptotic analysis,

the theory of entire functions, and to algorithmic graph theory.

Thu, 31 Oct 2013

13:00 - 14:00
L6

see below

James Newbury and Zhaoxu Hou
Abstract

\textbf{James Newbury} \newline

Title: Heavy traffic diffusion approximation of the limit order book in a one-sided reduced-form model. \newline

Abstract: Motivated by a zero-intelligence approach, we try to capture the

dynamics of the best bid (or best ask) queue in a heavy traffic setting,

i.e when orders and cancellations are submitted at very high frequency.

We first prove the weak convergence of the discrete-space best bid/ask

queue to a jump-diffusion process. We then identify the limiting process

as a regenerative elastic Brownian motion with drift and random jumps to

the origin.

\newline

\textbf{Zhaoxu Hou} \newline

Title: Robust Framework In Finance: Martingale Optimal Transport and

Robust Hedging For Multiple Marginals In Continuous Time

\newline

Abstract: It is proved by Dolinsky and Soner that there is no duality

gap between the robust hedging of path-dependent European Options and a

martingale optimal problem for one marginal case. Motivated by their

work and Mykland's idea of adding a prediction set of paths (i.e.

super-replication of a contingent claim only required for paths falling

in the prediction set), we try to achieve the same type of duality

result in the setting of multiple marginals and a path constraint.

Wed, 30 Oct 2013
16:00
C6

Learning spaces

Sophie Raynor
(University of Aberdeen)
Abstract

Working together with the Blue Brain Project at the EPFL, I'm trying to develop new topological methods for neural modelling. As a mathematician, however, I'm really motivated by how these questions in neuroscience can inspire new mathematics. I will introduce new work that I am doing, together with Kathryn Hess and Ran Levi, on brain plasticity and learning processes, and discuss some of the topological and geometric features that are appearing in our investigations.

Wed, 30 Oct 2013
11:30
Queen's College

Straight edge and compass to Origami

Robert Kropholler
Abstract

I will look at the classical constructions that can be made using a straight edge and compass, I will then look at the limits of these constructions. I will then show how much further we can get with Origami, explaining how it is possible to trisect an angle or double a cube. Compasses not supplied.

Tue, 29 Oct 2013

15:45 - 16:45
L4

Quasimaps, wall-crossings, and Mirror Symmetry II

Ionut Ciocan-Fontanine
(Minnesota)
Abstract

Quasimaps provide compactifications, depending on a stability parameter epsilon, for moduli spaces of maps from nonsingular algebraic curves to a large class of GIT quotients. These compactifications enjoy good properties and in particular they carry virtual fundamental classes. As the parameter epsilon varies, the resulting invariants are related by wall-crossing formulas. I will present some of these formulas in genus zero, and will explain why they can be viewed as generalizations (in several directions) of Givental's toric mirror theorems. I will also describe extensions of wall-crossing to higher genus, and (time permitting) to orbifold GIT targets as well.
The talk is based on joint works with Bumsig Kim, and partly also with Daewoong Cheong and with Davesh Maulik.

Tue, 29 Oct 2013

14:30 - 15:00
L5

Structure exploitation in Hessian computations

Patrick Farrell
(University of Oxford)
Abstract

Hessians of functionals of PDE solutions have important applications in PDE-constrained optimisation (Newton methods) and uncertainty quantification (for accelerating high-dimensional Bayesian inference).  With current techniques, a typical cost for one Hessian-vector product is 4-11 times the cost of the forward PDE solve: such high costs generally make their use in large-scale computations infeasible, as a Hessian solve or eigendecomposition would have costs of hundreds of PDE solves.

In this talk, we demonstrate that it is possible to exploit the common structure of the adjoint, tangent linear and second-order adjoint equations to greatly accelerate the computation of Hessian-vector products, by trading a large amount of computation for a large amount of storage. In some cases of practical interest, the cost of a Hessian-
vector product is reduced to a small fraction of the forward solve, making it feasible to employ sophisticated algorithms which depend on them.

Tue, 29 Oct 2013

14:30 - 15:30
C2

Hypergraph matchings

Peter Keevash
(University of Oxford)
Abstract

Perfect matchings are fundamental objects of study in graph theory. There is a substantial classical theory, which cannot be directly generalised to hypergraphs unless P=NP, as it is NP-complete to determine whether a hypergraph has a perfect matching. On the other hand, the generalisation to hypergraphs is well-motivated, as many important problems can be recast in this framework, such as Ryser's conjecture on transversals in latin squares and the Erdos-Hanani conjecture on the existence of designs. We will discuss a characterisation of the perfect matching problem for uniform hypergraphs that satisfy certain density conditions (joint work with Richard Mycroft), and a polynomial time algorithm for determining whether such hypergraphs have a perfect matching (joint work with Fiachra Knox and Richard Mycroft).

Tue, 29 Oct 2013

14:00 - 14:30
L5

Quantitative sparse signal recovery guarantees of nonconvex nonsmooth first-order methods

Coralia Cartis
(University of Oxford)
Abstract

Finding a sparse signal solution of an underdetermined linear system of measurements is commonly solved in compressed sensing by convexly relaxing the sparsity requirement with the help of the l1 norm. Here, we tackle instead the original nonsmooth nonconvex l0-problem formulation using projected gradient methods. Our interest is motivated by a recent surprising numerical find that despite the perceived global optimization challenge of the l0-formulation, these simple local methods when applied to it can be as effective as first-order methods for the convex l1-problem in terms of the degree of sparsity they can recover from similar levels of undersampled measurements. We attempt here to give an analytical justification in the language of asymptotic phase transitions for this observed behaviour when Gaussian measurement matrices are employed. Our approach involves novel convergence techniques that analyse the fixed points of the algorithm and an asymptotic probabilistic analysis of the convergence conditions that derives asymptotic bounds on the extreme singular values of combinatorially many submatrices of the Gaussian measurement matrix under matrix-signal independence assumptions.

This work is joint with Andrew Thompson (Duke University, USA).

Tue, 29 Oct 2013

14:00 - 15:00
L4

Quasimaps, wall-crossings, and Mirror Symmetry I

Ionut Ciocan-Fontanine
(Minnesota)
Abstract

Quasimaps provide compactifications, depending on a stability parameter epsilon, for moduli spaces of maps from nonsingular algebraic curves to a large class of GIT quotients. These compactifications enjoy good properties and in particular they carry virtual fundamental classes. As the parameter epsilon varies, the resulting invariants are related by wall-crossing formulas. I will present some of these formulas in genus zero, and will explain why they can be viewed as generalizations (in several directions) of Givental's toric mirror theorems. I will also describe extensions of wall-crossing to higher genus, and (time permitting) to orbifold GIT targets as well.
The talk is based on joint works with Bumsig Kim, and partly also with Daewoong Cheong and with Davesh Maulik.

Tue, 29 Oct 2013
00:00
Oxford-Man Institute

CANCELLED

CANCELLED
Mon, 28 Oct 2013

17:00 - 18:00
C5

Mixed Motives in Number Theory

Netan Dogra
Abstract

Mixed motives turn up in number theory in various guises. Rather than discuss the rather deep foundational questions involved, this talk will aim

to give several illustrations of the ubiquity of mixed motives and their realizations. Along the way I hope to mention some of: the Mordell-Weil

theorem, the theory of height pairings, special values of L-functions, the Mahler measure of a polynomial, Galois deformations and the motivic

fundamental group.

Mon, 28 Oct 2013

17:00 - 18:00
L6

Low-regularity Riemannian metrics and the positive mass theorem

James Grant
(University of Surrey)
Abstract

We show that the positive mass theorem holds for

asymptotically flat, $n$-dimensional Riemannian manifolds with a metric

that is continuous, lies in the Sobolev space $W^{2, n/2}_{loc}$, and

has non-negative scalar curvature in the distributional sense. Our

approach requires an analysis of smooth approximations to the metric,

and a careful control of elliptic estimates for a related conformal

transformation problem. If the metric lies in $W^{2, p}_{loc}$ for

$p>n/2$, then we show that our metrics may be approximated locally

uniformly by smooth metrics with non-negative scalar curvature.

This talk is based on joint work with N. Tassotti and conversations with

J.J. Bevan.

Mon, 28 Oct 2013

15:45 - 16:45
Oxford-Man Institute

Small-particle scaling limits in a regularized Laplacian growth model"

Alan Sola
(University of Cambridge)
Abstract

With F. Johansson Viklund (Columbia) and A. Turner (Lancaster), we have studied a regularized version of the Hastings-Levitov model of random Laplacian growth. In addition to the usual feedback parameter $\alpha>0$, this regularized version of the growth process features a smoothing parameter $\sigma>0$.

We prove convergence of random clusters, in the limit as the size of the individual aggregating particles tends to zero, to deterministic limits, provided the smoothing parameter does not tend to zero too fast. We also study scalings limit of the harmonic measure flow on the boundary, and show that it can be described in terms of stopped Brownian webs on the circle. In contrast to the case $\alpha=0$, the flow does not always collapse into a single Brownian motion, which can be interpreted as a random number of infinite branches being present in the clusters.

Mon, 28 Oct 2013

14:15 - 15:15
Oxford-Man Institute

The boundary Harnack principle in fractal spaces

Janna Lier
(Bonn University)
Abstract

Abstract: The boundary Harnack principle states that the ratio of any two functions, which are positive and harmonic on a domain, is bounded near some part of the boundary where both functions vanish. A given domain may or may not have this property, depending on the geometry of its boundary and the underlying metric measure space.

In this talk, we will consider a scale-invariant boundary Harnack principle on domains that are inner uniform. This has applications such as two-sided bounds on the Dirichlet heat kernel, or the identification of the Martin boundary and the topological boundary for bounded inner uniform domains.

The inner uniformity provides a large class of domains which may have very rough boundary as long as there are no cusps. Aikawa and Ancona proved the scale-invariant boundary Harnack principle on inner uniform domains in Euclidean space. Gyrya and Saloff-Coste gave a proof in the setting of non-fractal strictly local Dirichlet spaces that satisfy a parabolic Harnack inequality.

I will present a scale-invariant boundary Harnack principle for inner uniform domains in metric measure Dirichlet spaces that satisfy a parabolic Harnack inequality. This result applies to fractal spaces.

Mon, 28 Oct 2013

12:00 - 13:00
L5

An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts

Philip Candelas
(Oxford)
Abstract
Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic-K3 fibrations whose mirror images are also elliptic-K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut intotwo parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.
Fri, 25 Oct 2013

16:00 - 17:00
L4

Asymmetric information and risk aversion of market makers

Umut Cetin
(Dept. of Mathematics, LSE)
Abstract

We analyse the impact of market makers' risk aversion on the equilibrium in a speculative market consisting of a risk neutral informed trader and noise traders. The unwillingness of market makers to bear risk causes the informed trader to absorb large shocks in their inventories. The informed trader's optimal strategy is to drive the market price to its fundamental value while disguising her trades as the ones of an uninformed strategic trader. This results in a mean reverting demand, price reversal, and systematic changes in the market depth. We also find that an increase in risk aversion leads to lower market depth, less efficient prices, stronger price reversal and slower convergence to fundamental value. The endogenous value of private information, however, is non-monotonic in risk aversion. We will mainly concentrate on the case when the private signal of the informed is static. If time permits, the implications of a dynamic signal will be discussed as well.

Based on a joint work with Albina Danilova.

Fri, 25 Oct 2013

14:15 - 15:15
C6

Order in Chaos: The Emergence of Pattern in Random Processes

William Newman
(UCLA)
Abstract

Many years ago, Mark Kac was consulted by biologist colleague Lamont Cole regarding field-based observations of animal populations that suggested the existence of 3-4 year cycles in going from peak to peak. Kac provided an elegant argument for how purely random sequences of numbers could yield a mean value of 3 years, thereby establishing the notion that pattern can seemingly emerge in random processes. (This does not, however, mean that there could be a largely deterministic cause of such population cycles.)

By extending Kac's argument, we show how the distribution of cycle length can be analytically established using methods derived from random graph theory, etc. We will examine how such distributions emerge in other natural settings, including large earthquakes as well as colored Brownian noise and other random models and, for amusement, the Standard & Poor's 500 index for percent daily change from 1928 to the present.

We then show how this random model could be relevant to a variety of spatially-dependent problems and the emergence of clusters, as well as to memory and the aphorism "bad news comes in threes." The derivation here is remarkably similar to the former and yields some intriguing closed-form results. Importantly, the centroids or "centers of mass" of these clusters also yields clusters and a hierarchy then emerges. Certain "universal" scalings appear to emerge and scaling factors reminiscent of Feigenbaum numbers. Finally, as one moves from one dimension to 2, 3, and 4 dimensions, the scaling behaviors undergo modest change leaving this scaling phenomena qualitatively intact.

Finally, we will show how that an adaptation of the Langevin equation from statistical physics provides not simply a null-hypothesis for matching the observation of 3-4 year cycles, but a remarkably simple model description for the behavior of animal populations.

Thu, 24 Oct 2013

17:15 - 18:15
L6

New transfer principles and applications to represenation theory

Immanuel Halupczok
(Leeds)
Abstract

The transfer principle of Ax-Kochen-Ershov says that every first order sentence φ in the language of valued fields is, for p sufficiently big, true in ℚ_p iff it is true in \F_p((t)). Motivic integration allowed to generalize this to certain kinds of non-first order sentences speaking about functions from the valued field to ℂ. I will present some new transfer principles of this kind and explain how they are useful in representation theory. In particular, local integrability of Harish-Chandra characters, which previously was known only in ℚ_p, can be transferred to \F_p((t)) for p >> 1. (I will explain what this means.)

This is joint work with Raf Cluckers and Julia Gordon.

Thu, 24 Oct 2013

16:00 - 17:30
C6

GIT, Symplectic Reduction and the Kempf-Ness Theorem

Tom Hawes
Abstract

Consider a smooth, complex projective variety X inside P^n and an action of a reductive linear algebraic group G inside GL(n+1,C). On the one hand, we can view this as an algebra-geometric set-up and use geometric invariant theory (GIT) to construct a quotient variety X // G, which parameterises `most' of the closed orbits of X. On the other hand, X is naturally a symplectic manifold, and since G is reductive we can take a maximal real compact Lie subgroup K of G and consider the symplectic reduction of X by K with respect to an appropriate moment map. The Kempf-Ness theorem then says that the results of these two constructions are homeomorphic. In this talk I will define GIT and symplectic reduction and try to sketch the proof of the Kempf-Ness theorem.