Wed, 27 Feb 2019
11:00
N3.12

Applying Distributional Compositional Categorical Models of Meaning to Language Translation

Brian Tyrrell
(University of Oxford)
Abstract

In 2010 Coecke, Sadrzadeh, and Clark formulated a new model of natural language which operates by combining the syntactics of grammar and the semantics of individual words to produce a unified ''meaning'' of sentences. This they did by using category theory to understand the component parts of language and to amalgamate the components together to form what they called a ''distributional compositional categorical model of meaning''. In this talk I shall introduce the model of Coecke et. al., and use it to compare the meaning of sentences in Irish and in English (and thus ascertain when a sentence is the translation of another sentence) using a cosine similarity score.

The Irish language is a member of the Gaelic family of languages, originating in Ireland and is the official language of the Republic of Ireland.

Tue, 26 Feb 2019
16:00
L1

Geometric model theory in separably closed valued fields

Martin Hils
(University of Muenster)
Further Information

joint work with Moshe Kamensky and Silvain Rideau

Abstract

Let $p$ be a fixed prime number and let $SCVF_p$ be the theory of separably closed non-trivially valued fields of
characteristic $p$. In the talk, we will see that, in many ways, the step from $ACVF_{p,p}$ to $SCVF_p$ is not more
complicated than the one from $ACF_p$ to $SCF_p$.

At a basic level, this is true for quantifier elimination (Delon), for which it suffices to add parametrized $p$-coordinate
functions to any of the usual languages for valued fields. It follows that all completions are NIP.

At a more sophisticated level, in finite degree of imperfection, when a $p$-basis is named or when one just works with
Hasse derivations, the imaginaries of $SCVF_p$ are not more complicated than the ones in $ACVF_{p,p}$, i.e., they are
classified by the geometric sorts of Haskell-Hrushovski-Macpherson. The latter is proved using prolongations. One may
also use these to characterize the stable part and the stably dominated types in $SCVF_p$, and to show metastability.

Tue, 26 Feb 2019

15:30 - 16:30
L4

Field and Vertex algebras from geometry and topology

Sven Meinhardt
(Sheffield)
Abstract

I will explain the notion of a singular ring and sketch how singular rings provide field and vertex algebras introduced by Borcherds and Kac. All of these notions make sense in general symmetric monoidal categories and behave nicely with respect to symmetric lax monoidal functors. I will provide a complete classification of singular rings if the tensor product is a cartesian product. This applies in particular to categories of topological spaces or (algebraic) stacks equipped with the usual cartesian product. Moduli spaces provide a rich source of examples of singular rings. By combining these ideas, we obtain vertex and field algebras for each reasonable moduli space and each choice of an orientable homology theory. This generalizes a recent construction of vertex algebras by Dominic Joyce.

Tue, 26 Feb 2019

14:30 - 15:00
L3

Multispectral snapshot demosaicing via non-convex matrix completion

Simon Vary
(Oxford)
Abstract

Snapshot mosaic multispectral imagery acquires an undersampled data cube by acquiring a single spectral measurement per spatial pixel. Sensors which acquire p frequencies, therefore, suffer from severe 1/p undersampling of the full data cube.  We show that the missing entries can be accurately imputed using non-convex techniques from sparse approximation and matrix completion initialised with traditional demosaicing algorithms.

Tue, 26 Feb 2019

14:30 - 15:30
L6

Graphons with minimum clique density

Maryam Sharifzadeh
Further Information

Among all graphs of given order and size, we determine the asymptotic structure of graphs which minimise the number of $r$-cliques, for each fixed $r$. In fact, this is achieved by characterising all graphons with given density which minimise the $K_r$-density. The case $r=3$ was proved in 2016 by Pikhurko and Razborov.

 

This is joint work with H. Liu, J. Kim, and O. Pikhurko.

Tue, 26 Feb 2019
14:15
L4

Kac-Moody correction factors and Eisenstein series

Thomas Oliver
(Oxford)
Abstract

Formally, the Fourier coefficients of Eisenstein series on Kac-Moody groups contain as yet mysterious automorphic L-functions relevant to open conjectures such as that of Ramanujan and Langlands functoriality. In this talk, we will consider the constant Fourier coefficient, if it even makes sense rigorously, and its relationship to the geometry and combinatorics of a Kac-Moody group. Joint work with Kyu-Hwan Lee.

 

Tue, 26 Feb 2019

14:00 - 14:30
L3

New mixed finite element methods for natural convection with phase-change in porous media

Bryan Gómez Vargas
(Conception)
Abstract

This talk is concerned with the mathematical and numerical analysis of a steady phase change problem for non-isothermal incompressible viscous flow. The system is formulated in terms of pseudostress, strain rate and velocity for the Navier-Stokes-Brinkman equation, whereas temperature, normal heat flux on the boundary, and an auxiliary unknown are introduced for the energy conservation equation. In addition, and as one of the novelties of our approach, the symmetry of the pseudostress is imposed in an ultra-weak sense, thanks to which the usual introduction of the vorticity as an additional unknown is no longer needed. Then, for the mathematical analysis two variational formulations are proposed, namely mixed-primal and fully-mixed approaches, and the solvability of the resulting coupled formulations is established by combining fixed-point arguments, Sobolev embedding theorems and certain regularity assumptions. We then construct corresponding Galerkin discretizations based on adequate finite element spaces, and derive optimal a priori error estimates. Finally, numerical experiments in 2D and 3D illustrate the interest of this scheme and validate the theory.

Tue, 26 Feb 2019

12:00 - 13:15
L4

Higgsplosion: excitements and problems

Alexander Belyaev
(Southampton University)
Abstract

A recent calculation of the multi-Higgs boson production in scalar theories
with spontaneous symmetry breaking has demonstrated the fast growth of the
cross section with the Higgs multiplicity at sufficiently large energies,
called “Higgsplosion”. It was argued that “Higgsplosion” solves the Higgs
hierarchy and fine-tuning problems. The phenomena looks quite exciting,
however in my talk I will present arguments that: a) the formula for
“Higgsplosion” has a limited applicability and inconsistent with unitarity
of the Standard Model; b) that the contribution from “Higgsplosion” to the
imaginary part of the Higgs boson propagator cannot be re-summed in order to
furnish a solution of the Higgs hierarchy and fine-tuning problems.

Based on our recent paper https://arxiv.org/abs/1808.05641 (A. Belyaev, F. Bezrukov, D. Ross)

 

Mon, 25 Feb 2019

16:00 - 17:00
L4

Diffeomorphic Approximation of W^{1,1} Planar Sobolev Homeomorphisms

Stanislav Hencl
(Charles University in Prague)
Abstract

Let $\Omega\subseteq\mathbb{R}^2$ be a domain and let $f\in W^{1,1}(\Omega,\mathbb{R}^2)$ be a homeomorphism (between $\Omega$ and $f(\Omega)$). Then there exists a sequence of smooth diffeomorphisms $f_k$ converging to $f$ in $W^{1,1}(\Omega,\mathbb{R}^2)$ and uniformly. This is a joint result with A. Pratelli.
 

Mon, 25 Feb 2019

15:45 - 16:45
L3

Reinforcement and random media

XIAOLIN ZENG
(University of Strasbourg)
Abstract

Abstract: The edge reinforced random walk is a self-interacting process, in which the random walker prefer visited edges with a bias proportional to the number of times the edges were visited. We will gently introduce this model and talk about some of its histories and recent progresses.

 

Mon, 25 Feb 2019
15:45
L6

Twisted Blanchfield pairings and Casson-Gordon invariants

Anthony Conway
(Durham University)
Abstract

 In the late seventies, Casson and Gordon developed several knot invariants that obstruct a knot from being slice, i.e. from bounding a disc in the 4-ball. In this talk, we use twisted Blanchfield pairings to define twisted generalisations of the Levine-Tristram signature function, and describe their relation to the Casson-Gordon invariants. If time permits, we will present some obstructions to algebraic knots being slice. This is joint work with Maciej Borodzik and Wojciech Politarczyk.

Mon, 25 Feb 2019

14:15 - 15:15
L3

Angles of Random Polytopes

DMITRY ZAPOROZHETS
(St. Petersburg University)
Abstract

We will consider some problems on calculating  the average  angles of random polytopes. Some of them are open.

Mon, 25 Feb 2019
14:15
L4

Tropically constructed Lagrangians in mirror quintic threefolds

Cheuk Yu Mak
(Cambridge University)
Abstract

In this talk, we will explain how to construct embedded closed Lagrangian submanifolds in mirror quintic threefolds using tropical curves and the toric degeneration technique. As an example, we will illustrate the construction for tropical curves that contribute to the Gromov–Witten invariant of the line class of the quintic threefold. The construction will in turn provide many homologous and non-Hamiltonian isotopic Lagrangian
rational homology spheres, and a geometric interpretation of the multiplicity of a tropical curve as the weight of a Lagrangian. This is a joint work with Helge Ruddat.

 

Mon, 25 Feb 2019
12:45
L5

The Laplacian flow in G_2 geometry

Jason Lotay
(Oxford)
Abstract

Finding Riemannian metrics with holonomy G_2 is a challenging problem with links in mathematics to Einstein metrics and area-minimizing submanifolds, and to M-theory in theoretical physics.  I will provide a brief survey on recent progress towards studying this problem using a geometric flow approach, including connections to calibrated fibrations.

Fri, 22 Feb 2019

14:00 - 15:00
C2

The viscosities of partially molten materials undergoing diffusion creep

John Rudge
(University of Cambridge)
Abstract

Partially molten materials resist shearing and compaction. This resistance

is described by a fourth-rank effective viscosity tensor. When the tensor

is isotropic, two scalars determine the resistance: an effective shear and

an effective bulk viscosity. In this seminar, calculations are presented of

the effective viscosity tensor during diffusion creep for a 3D tessellation of

tetrakaidecahedrons (truncated octahedrons). The geometry of the melt is

determined by assuming textural equilibrium.  Two parameters

control the effect of melt on the viscosity tensor: the porosity and the

dihedral angle. Calculations for both Nabarro-Herring (volume diffusion)

and Coble (surface diffusion) creep are presented. For Nabarro-Herring

creep the bulk viscosity becomes singular as the porosity vanishes. This

singularity is logarithmic, a weaker singularity than typically assumed in

geodynamic models. The presence of a small amount of melt (0.1% porosity)

causes the effective shear viscosity to approximately halve. For Coble creep,

previous modelling work has argued that a very small amount of melt may

lead to a substantial, factor of 5, drop in the shear viscosity. Here, a

much smaller, factor of 1.4, drop is obtained.

Fri, 22 Feb 2019

14:00 - 15:00
L1

How we learn

Dr Iro Xenidou-Dervou
Abstract

How do humans process information? What are their strengths and limitations? This crash course in cognitive psychology will provide the background necessary to think realistically about how learning works.

Fri, 22 Feb 2019

14:00 - 15:00
L3

Programming languages for molecular and genetic devices

Dr Andrew Phillips
(Head of Biological Computation Group Microsoft Research Cambridge)
Abstract

Computational nucleic acid devices show great potential for enabling a broad range of biotechnology applications, including smart probes for molecular biology research, in vitro assembly of complex compounds, high-precision in vitro disease diagnosis and, ultimately, computational therapeutics inside living cells. This diversity of applications is supported by a range of implementation strategies, including nucleic acid strand displacement, localisation to substrates, and the use of enzymes with polymerase, nickase and exonuclease functionality. However, existing computational design tools are unable to account for these different strategies in a unified manner. This talk presents a programming language that allows a broad range of computational nucleic acid systems to be designed and analysed. We also demonstrate how similar approaches can be incorporated into a programming language for designing genetic devices that are inserted into cells to reprogram their behaviour. The language is used to characterise the genetic components for programming populations of cells that communicate and self-organise into spatial patterns. More generally, we anticipate that languages and software for programming molecular and genetic devices will accelerate the development of future biotechnology applications.

Fri, 22 Feb 2019

12:00 - 13:00
L4

The Maximum Mean Discrepancy for Training Generative Adversarial Networks

Arthur Gretton
(UCL Gatsby Computational Neuroscience Unit)
Abstract

Generative adversarial networks (GANs) use neural networks as generative models, creating realistic samples that mimic real-life reference samples (for instance, images of faces, bedrooms, and more). These networks require an adaptive critic function while training, to teach the networks how to move improve their samples to better match the reference data. I will describe a kernel divergence measure, the maximum mean discrepancy, which represents one such critic function. With gradient regularisation, the MMD is used to obtain current state-of-the art performance on challenging image generation tasks, including 160 × 160 CelebA and 64 × 64 ImageNet. In addition to adversarial network training, I'll discuss issues of gradient bias for GANs based on integral probability metrics, and mechanisms for benchmarking GAN performance.

Fri, 22 Feb 2019

11:45 - 13:15
L2

InFoMM CDT Group Meeting

Helen Fletcher, Bogdan Toader, Jessica Williams, Giuseppe Ughi
(Mathematical Institute)
Thu, 21 Feb 2019
17:00
L5

Actions of automorphism groups of omega-categorical structures on compact spaces

David Evans
(Imperial College, London)
Abstract

If G is a topological group, a G-flow X is a non-empty, compact, Hausdorff space on which G acts continuously; it is minimal if all G-orbits are dense. By a theorem of Ellis, there is a (unique) minimal G-flow M(G) which is universal: there is a continuous G-map to every other G-flow. 

Here, we will be interested in the case where G = Aut(K) for some structure K, usually omega-categorical. Work of Kechris, Pestov and Todorcevic and others gives conditions on K under which structural Ramsey Theory (due to Nesetril - Rodl and others) can be used to compute M(G). 

In the first part of the talk I will give a description of the above theory and when it applies (the 'tame case'). In the second part, I will describe joint work with J. Hubicka and J. Nesetril which shows that the omega-categorical structures constructed in the late 1980's by Hrushovski as counterexamples to Lachlan's conjecture are not tame and moreover, minimal flows of their automorphism groups have rather different properties to those in the tame case. 

Thu, 21 Feb 2019

16:00 - 17:00
L6

GCD sums and sum-product estimates

Aled Walker
(University of Cambridge)
Abstract


When S is a finite set of natural numbers, a GCD-sum is a particular kind of double-sum over the elements of S, and they arise naturally in several settings. In particular, these sums play a role when one studies the local statistics of point sequences on the unit circle. There are known upper bounds for the size of a GCD-sum in terms of the size of the set S, most recently due to de la Bretèche and Tenenbaum, and these bounds are sharp. Yet the known examples of sets S for which the GCD-sum over S provides a matching lower bound all possess strong multiplicative structure, whereas in applications the set S often comes with additive structure. In this talk I will describe recent joint work with Thomas Bloom in which we apply an estimate from sum-product theory to prove a much stronger upper bound on a GCD-sum over an additively structured set. I will also describe an application of this improvement to the study of the distribution of points on the unit circle, with a further application to arbitrary infinite subsets of squares. 

Thu, 21 Feb 2019

16:00 - 17:30
L4

Zero-sum stopping games with asymmetric information

Jan Palczewski
(Leeds University)
Abstract

We study the value of a zero-sum stopping game in which the terminal payoff function depends on the underlying process and on an additional randomness (with finitely many states) which is known to one player but unknown to the other. Such asymmetry of information arises naturally in insider trading when one of the counterparties knows an announcement before it is publicly released, e.g., central bank's interest rates decision or company earnings/business plans. In the context of game options this splits the pricing problem into the phase before announcement (asymmetric information) and after announcement (full information); the value of the latter exists and forms the terminal payoff of the asymmetric phase.

The above game does not have a value if both players use pure stopping times as the informed player's actions would reveal too much of his excess knowledge. The informed player manages the trade-off between releasing information and stopping optimally employing randomised stopping times. We reformulate the stopping game as a zero-sum game between a stopper (the uninformed player) and a singular controller (the informed player). We prove existence of the value of the latter game for a large class of underlying strong Markov processes including multi-variate diffusions and Feller processes. The main tools are approximations by smooth singular controls and by discrete-time games.

Thu, 21 Feb 2019
16:00
C4

The Story of C^infinity Algebraic Geometry

Kelli Francis-Staite
(Oxford University)
Abstract

After considering motivations in symplectic geometry, I’ll give a summary of $C^\infty$-Algebraic Geometry and how to extend these concepts to manifolds with corners. 

Thu, 21 Feb 2019

16:00 - 17:30
L3

Strategies for Multilevel Monte Carlo for Bayesian Inversion

Professor Kody Law
(University of Manchester)
Abstract

This talk will concern the problem of inference when the posterior measure involves continuous models which require approximation before inference can be performed. Typically one cannot sample from the posterior distribution directly, but can at best only evaluate it, up to a normalizing constant. Therefore one must resort to computationally-intensive inference algorithms in order to construct estimators. These algorithms are typically of Monte Carlo type, and include for example Markov chain Monte Carlo, importance samplers, and sequential Monte Carlo samplers. The multilevel Monte Carlo method provides a way of optimally balancing discretization and sampling error on a hierarchy of approximation levels, such that cost is optimized. Recently this method has been applied to computationally intensive inference. This non-trivial task can be achieved in a variety of ways. This talk will review 3 primary strategies which have been successfully employed to achieve optimal (or canonical) convergence rates – in other words faster convergence than i.i.d. sampling at the finest discretization level. Some of the specific resulting algorithms, and applications, will also be presented.