Thu, 07 Jun 2018
16:00
C5

From Equivariant Cohomology to Equivariant Symplectic Cohomology

Todd Liebenschutz-Jones
(Oxford University)
Abstract

Equivariant cohomology is adapted from ordinary cohomology to better capture the action of a group on a topological space. In Floer theory, given an autonomous Hamiltonian, there is a natural action of the circle on 1-periodic flowlines given by time translation. Combining these two ideas leads to the definition of  $S^1$-equivariant symplectic cohomology. In this talk, I will introduce these ideas and explain how they are related. I will not assume prior knowledge of Floer theory.

Thu, 07 Jun 2018

16:00 - 17:30
L4

Large Deviations for McKean Vlasov Equations and Importance Sampling

Goncalo dos Reis
(University of Edinburgh)
Abstract


We discuss two Freidlin-Wentzell large deviation principles for McKean-Vlasov equations (MV-SDEs) in certain path space topologies. The equations have a drift of polynomial growth and an existence/uniqueness result is provided. We apply the Monte-Carlo methods for evaluating expectations of functionals of solutions to MV-SDE with drifts of super-linear growth.  We assume that the MV-SDE is approximated in the standard manner by means of an interacting particle system and propose two importance sampling (IS) techniques to reduce the variance of the resulting Monte Carlo estimator. In the "complete measure change" approach, the IS measure change is applied simultaneously in the coefficients and in the expectation to be evaluated. In the "decoupling" approach we first estimate the law of the solution in a first set of simulations without measure change and then perform a second set of simulations under the importance sampling measure using the approximate solution law computed in the first step. 

Thu, 07 Jun 2018

16:00 - 17:30
L3

The Jellycopter: Stable Levitation using a standard magnetic stirrer

David Fairhurst
(University of Nottingham)
Abstract

In laboratories around the world, scientists use magnetic stirrers to mix solutions and dissolve powders. It is well known that at high drive rates the stir bar jumps around erratically with poor mixing, leading to its nick-name 'flea'. Investigating this behaviour, we discovered a state in which the flea levitates stably above the base of the vessel, supported by magnetic repulsion between flea and drive magnet. The vertical motion is oscillatory and the angular motion a superposition of rotation and oscillation. By solving the coupled vertical and angular equations of motion, we characterised the flea’s behaviour in terms of two dimensionless quantities: (i) the normalized drive speed and (ii) the ratio of magnetic to viscous forces. However, Earnshaw’s theorem states that levitation via any arrangement of static magnets is only possible with additional stabilising forces. In our system, we find that these forces arise from the flea’s oscillations which pump fluid radially outwards, and are only present for a narrow range of Reynold's numbers. At slower, creeping flow speeds, only viscous forces are present, whereas at higher speeds, the flow reverses direction and the flea is no longer stable. We also use both the levitating and non-levitating states to measure rheological properties of the system.

Thu, 07 Jun 2018

14:00 - 15:00
L4

Multilevel and multifidelity approaches to UQ for PDEs

Prof. Max Gunzburger
(Florida State University)
Abstract

We first consider multilevel Monte Carlo and stochastic collocation methods for determining statistical information about an output of interest that depends on the solution of a PDE with inputs that depend on random parameters. In our context, these methods connect a hierarchy of spatial grids to the amount of sampling done for a given grid, resulting in dramatic acceleration in the convergence of approximations. We then consider multifidelity methods for the same purpose which feature a variety of models that have different fidelities. For example, we could have coarser grid discretizations, reduced-order models, simplified physics, surrogates such as interpolants, and, in principle, even experimental data. No assumptions are made about the fidelity of the models relative to the “truth” model of interest so that unlike multilevel methods, there is no a priori model hierarchy available. However, our approach can still greatly accelerate the convergence of approximations.

Thu, 07 Jun 2018
12:00
L5

On singular limits for the Vlasov-Poisson system

Mikaela Iacobelli
(Durham University)
Abstract

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains a fundamental open problem. In this talk we present the rigorous justification of the quasineutral limit for very small but rough perturbations of analytic initial data for the Vlasov-Poisson equation in dimensions 1, 2, and 3. Also, we discuss a recent result in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Wed, 06 Jun 2018

16:00 - 17:00
C5

QI rigidity of commensurator subgroups

Alex Margolis
(University of Oxford)
Abstract

One of the main themes in geometric group theory is Gromov's program to classify finitely generated groups up to quasi-isometry. We show that under certain situations, a quasi-isometry preserves commensurator subgroups. We will focus on the case where a finitely generated group G contains a coarse PD_n subgroup H such that G=Comm(H). Such groups can be thought of as coarse fibrations whose fibres are cosets of H; quasi-isometries of G coarsely preserve these fibres. This  generalises work of Whyte and Mosher--Sageev--Whyte.

Wed, 06 Jun 2018

16:00 - 17:00
C4

Locally Finite Trees and Topological Minor Relation

Jorge Bruno
(Winchester)
Abstract

Nash-Williams showed that the collection of locally finite trees under the topological minor relation results in a BQO. Naturally, two interesting questions arise:

1.      What is the number \lambda of topological types of locally finite trees?

2.       What are the possible sizes of an equivalence class of locally finite trees?

 For (1), clearly, \omega_0 \leq \lambda \leq c and Matthiesen refined it to \omega_1 \leq \lambda \leq c. Thus, this question becomes non-trivial in the absence of the Continuum Hypothesis. In this paper we address both questions by showing - entirely within ZFC - that for a large collection of locally finite trees that includes those with countably many rays:

- \lambda = \omega_1, and

- the size of an equivalence class can only be either 1 or c.

Tue, 05 Jun 2018

16:00 - 17:00
L5

Counting rational points and iterated polynomial equations

Harry Schmidt
(Manchester University)
Abstract

In joint work with Gareths Boxall and Jones we prove a poly-logarithmic bound for the number of rational points on the graph of functions on the disc that exhibit a certain decay. I will present an application of this counting theorem to the arithmetic of dynamical systems. It concerns fields generated by the solutions of equations of the form $P^{\circ n}(z) = P^{\circ n}(y)$ for a polynomial $P$ of degree $D \geq 2$ where $y$ is a fixed algebraic number. The general goal is to show that the degree of such fields grows like a power of $D^n$.    

Tue, 05 Jun 2018

15:45 - 16:45
L4

Ordinary K3 surfaces over finite fields

Lenny Taelman
(University of Amsterdam)
Abstract

We give a description of the category of ordinary K3 surfaces over a finite field in terms of linear algebra data over Z. This gives an analogue for K3 surfaces of Deligne's description of the category of ordinary abelian varieties over a finite field, and refines earlier work by N.O. Nygaard and J.-D. Yu. Two important ingredients in the proof are integral p-adic Hodge theory, and a description of CM points on Shimura stacks in terms of associated Galois representations. References: arXiv:1711.09225, arXiv:1707.01236.

Tue, 05 Jun 2018
14:30
L6

Fractional decompositions of dense graphs

Richard Montgomery
(Cambridge)
Abstract

It is difficult to determine when a graph G can be edge-covered by edge-disjoint copies of a fixed graph F. That is, when it has an F-decomposition. However, if G is large and has a high minimum degree then it has an F-decomposition, as long as some simple divisibility conditions hold. Recent research allows us to prove bounds on the necessary minimum degree by studying a relaxation of this problem, where a fractional decomposition is sought.

I will show how a relatively simple random process can give a good approximation to a fractional decomposition of a dense graph, and how it can then be made exact. This improves the best known bounds for this problem.
 

Tue, 05 Jun 2018

14:00 - 15:00
L5

Finite volume element methods: An overview

Prof Sarvesh Kumar
(Indian Institute of Space Science and Technology)
Abstract

In this talk, first we  address the convergence issues of a standard finite volume element method (FVEM) applied to simple elliptic problems. Then, we discuss discontinuous finite volume element methods (DFVEM) for elliptic problems  with emphasis on  computational and theoretical  advantages over the standard FVEM. Further, we present a natural extension of DFVEM employed for the elliptic problem to the Stokes problems. We also discuss suitability of these methods for the approximation of incompressible miscible displacement problems.
 

Tue, 05 Jun 2018

12:00 - 13:00
C3

Spambot detection and polarization analysis: evidence from the Italian election Twitter data

Carolina Becatti
(IMT School for Advanced Studies Lucca)
Abstract

Fake accounts detection and users’ polarization are two very well known topics concerning the social media sphere, that have been extensively discussed and analyzed, both in the academic literature and in everyday life. Social bots are autonomous accounts that are explicitly created to increase the number of followers of a target user, in order to inflate its visibility and consensus in a social media context. For this reason, a great variety of methods for their detection have been proposed and tested. Polarisation, also known as confirmation bias, is instead the common tendency to look for information that confirms one's preexisting beliefs, while ignoring opposite ones. Within this environment, groups of individuals characterized by the same system of beliefs are very likely to form. In the present talk we will first review part of the literature discussing both these topics. Then we will focus on a new dataset collecting tweets from the last Italian parliament elections in 2018 and some preliminary results will be discussed.

Tue, 05 Jun 2018

12:00 - 13:15
L4

A Cohomological Perspective on Algebraic Quantum Field Theory

Eli Hawkins
(University of York)
Abstract

After outlining the principles of Algebraic Quantum Field Theory (AQFT) I will describe the generalization of Hochschild cohomology that is relevant to describing deformations in AQFT. An interaction is described by a cohomology class.

Mon, 04 Jun 2018
17:00
L6

Growth of groups, isoperimetry and random walks

Anna Erschler
(ENS Paris)
Abstract

Answering a question of Milnor, Grigorchuk constructed in the early eighties the
first examples of groups of intermediate growth, that is, finitely generated
groups with growth strictly between polynomial and exponential.
In  joint work with Laurent Bartholdi, we show that under a mild regularity assumption, any function greater than exp(n^a), where `a' is a solution of the equation
  2^(3-3/x)+ 2^(2-2/x)+2^(1-1/x)=2,
is a growth function of some group. These are the first examples of groups
of intermediate growth where the asymptotic of  the growth function is known.
Among applications of our results is the fact that any group of locally subexponential growth
can be embedded as a subgroup of some group of intermediate growth (some of these latter groups cannot be  subgroups in Grigorchuk groups).

In a recent work with Tianyi Zheng, we  provide  near optimal lower bounds
for Grigorchuk torsion groups, including the first Grigorchuk group. Our argument is by a construction of random walks with non-trivial Poisson boundary, defined by 
a measure with power law decay.

Mon, 04 Jun 2018

16:00 - 17:00
L4

Rates of convergence to equilibrium in a one-dimensional kinetic equation

David Seifert
(Oxford)
Abstract

We consider a collisionless kinetic equation describing the probability density of particles moving in a one-dimensional domain subject to partly diffusive reflection at the boundary. It was shown in 2017 by Mokhtar-Kharroubi and Rudnicki that for large times such systems either converge to an invariant density or, if no invariant density exists, exhibit a so-called “sweeping phenomenon” in which the mass concentrates near small velocities. This dichotomy is obtained by means of subtle arguments relying on the theory of positive operator semigroups. In this talk I shall review some of these results before discussing how, under suitable assumptions both on the boundary operators (which in particular ensure that an invariant density exists) and on the initial density, one may even obtain estimates on the rate at which the system converges to its equilibrium. This is joint work with Mustapha Mokhtar-Kharroubi (Besançon).

Mon, 04 Jun 2018

15:45 - 16:45
L3

Genetic isolation by distance in a random environment

RAPHAEL FORIEN
(Ecole Polytechnique (ParisTech))
Abstract

I will present a mathematical model for the genetic evolution of a population which is divided in discrete colonies along a linear habitat, and for which the population size of each colony is random and constant in time. I will show that, under reasonable assumptions on the distribution of the population sizes, over large spatial and temporal scales, this population can be described by the solution to a stochastic partial differential equation with constant coefficients. These coefficients describe the effective diffusion rate of genes within the population and its effective population density, which are both different from the mean population density and the mean diffusion rate of genes at the microscopic scale. To do this, I will present a duality technique and a new convergence result for coalescing random walks in a random environment.

 

Mon, 04 Jun 2018
15:45
L6

Heegaard Floer, taut foliations, and regions of rational surgery slopes

Sarah Rasmussen
(Cambridge)
Abstract

Recent tools make it possible to partition the space of rational Dehn 
surgery slopes for a knot (or in some cases a link) in a 3-manifold into 
domains over which the Heegaard Floer homology of the surgered manifolds 
behaves continuously as a function of slope. I will describe some 
techniques for determining the walls of discontinuity separating these 
domains, along with efforts to interpret some aspects of this structure 
in terms of the behaviour of co-oriented taut foliations. This talk 
draws on a combination of independent work, previous joint work with 
Jake Rasmussen, and work in progress with Rachel Roberts.

Mon, 04 Jun 2018

14:15 - 15:15
L3

Laws of large numbers for a set of probability measures

ZENGJING CHEN
(Shandong University)
Abstract

In this paper, we investigate the limit properties of frequency of empirical averages when random variables are described by a set of probability measures and obtain a law of large numbers for upper-lower probabilities. Our result is an extension of the classical Kinchin's law of large numbers, but the proof is totally different.

keywords: Law of large numbers,capacity, non-additive probability, sub-linear expectation, indepence

paper by: Zengjing Chen School of Mathematics, Shandong University and Qingyang Liu Center for Economic Research, Shandong University

Mon, 04 Jun 2018
12:45
L3

(0,2) dualities and 4-simplices

Tudor Dimofte
(UC Davis and Oxford)
Abstract

3d N=2 Chern-Simons-matter theories have a large variety of boundary conditions that preserve 2d N=(0,2) supersymmetry, and support chiral algebras. I'll discuss some examples of how the chiral algebras transform across dualities. I'll then explain how to construct duality interfaces in 3d N=2 theories, and relate dualities *of* duality interfaces to "Pachner moves" in triangulations of 4-manifolds. Based on recent and upcoming work with K. Costello, D. Gaiotto, and N. Paquette.

Fri, 01 Jun 2018

14:00 - 15:00
L3

KATP channels and neonatal diabetes: from molecule to new therapy and beyond

Professor Dame Frances Ashcroft
(Department of Physiology Anatomy and Genetics University of Oxford)
Abstract

ATP-sensitive potassium (KATP) channels are critical for coupling changes in blood glucose to insulin secretion. Gain-of-function mutations in KATP channels cause a rare inherited form of diabetes that manifest soon after birth (neonatal diabetes). This talk shows how understanding KATP channel function has enabled many neonatal diabetes patients to switch from insulin injections to sulphonylurea drugs that block KATP channel activity, with considerable improvement in their clinical condition and quality of life.   Using a mouse model of neonatal diabetes, we also found that as little as 2 weeks of diabetes led to dramatic changes in gene expression, protein levels and metabolite concentrations. This reduced glucose-stimulated ATP production and insulin release. It also caused substantial glycogen storage and β-cell apoptosis. This may help explain why older neonatal diabetes patients with find it more difficult to transfer to drug therapy, and why the drug dose decreases with time in many patients. It also suggests that altered metabolism may underlie both the progressive impairment of insulin secretion and reduced β-cell mass in type 2 diabetes.