Fri, 01 Jun 2018

13:00 - 14:00
L6

Multilevel Monte Carlo for Estimating Risk Measures

Mike Giles
Abstract

Joint work with Abdul-Lateef Haji-Ali

This talk will discuss efficient numerical methods for estimating the probability of a large portfolio loss, and associated risk measures such as VaR and CVaR. These involve nested expectations, and following Bujok, Hambly & Reisinger (2015) we use the number of samples for the inner conditional expectation as the key approximation parameter in the Multilevel Monte Carlo formulation. The main difference in this case is the indicator function in the definition of the probability. Here we build on previous work by Gordy & Juneja (2010) who analyse the use of a fixed number of inner samples, and Broadie, Du & Moallemi (2011) who develop and analyse an adaptive algorithm. I will present the algorithm, outline the main theoretical results and give the numerical results for a representative model problem. I will also discuss the extension to real portfolios with a large number of options based on multiple underlying assets.

Fri, 01 Jun 2018
12:00
N3.12

Offset Hypersurfaces and Persistent Homology of Algebraic Varieties

Maddie Weinstein
(UC Berkeley)
Abstract

We will discuss the algebraicity of two quantities central to the computation of persistent homology. We will also connect persistent homology and algebraic optimization. Namely, we will express the degree corresponding to the distance variable of the offset hypersurface in terms of the Euclidean distance degree of the starting variety, obtaining a new way to compute these degrees. Finally, we will describe the non-properness locus of the offset construction and use this to describe the set of points that are topologically interesting (the medial axis and center points of the bounded components of the complement of the variety) and relevant to the computation of persistent homology.

Thu, 31 May 2018

16:00 - 17:00
L6

Coherent sheaves on arithmetic schemes and basic results on arithmetic ampleness

François Charles
(Universite Paris-Sud)
Abstract

We will discuss a basic framework to deal with coherent sheaves on schemes over $\mathbb{Z}$, involving infinite-dimensional results on the geometry of numbers. As an application, we will discuss basic results, old and new, on arithmetic ampleness, such as Serre vanishing, Nakai-Moishezon, and Bertini. This is joint work with Jean-Benoît Bost.

Thu, 31 May 2018

16:00 - 17:30
L3

How long does it take to get there?

Herbert Huppert
(University of Cambridge)
Abstract

There are a huge number of nonlinear partial differential equations that do not have analytic solutions.   Often one can find similarity solutions, which reduce the number of independent variables, but still leads, generally, to a nonlinear equation.  This can, only sometimes, be solved analytically.  But always the solution is independent of the initial conditions.   What role do they play?   It is generally stated that the similarity  solution agrees with the (not determined) exact solution when (for some variable say t) obeys t >> t_1.   But what is  t_1?   How does it depend on the initial conditions?  How large must  t be for the similarity solution to be within 15, 10, 5, 1, 0.1, ….. percent of the real solution?   And how does this depend on the parameters and initial conditions of the problem?   I will explain how two such typical, but somewhat different, fundamental problems can be solved, both analytically and numerically,  and compare some of the results with small scale laboratory experiments, performed during the talk.  It will be suggested that many members of the audience could take away the ideas and apply them in their own special areas.

Thu, 31 May 2018

12:00 - 13:00
L5

Boundary layers in periodic homogenization

Christophe Prange
(University of Bordeaux)
Abstract

This talk is concerned with quantitative periodic homogenization in domains with boundaries. The quantitative analysis near boundaries leads to the study of boundary layers correctors, which have in general a nonperiodic structure. The interaction between the boundary and the microstructure creates geometric resonances, making the study of the asymptotics or continuity properties particularly challenging. The talk is based on work with S. Armstrong, T. Kuusi and J.-C. Mourrat, as well as work by Z. Shen and J. Zhuge

Wed, 30 May 2018

16:00 - 17:00
C5

The pants graph

Esmee te Winkel
(University of Warwick)
Abstract

In the 80s, Hatcher and Thurston introduced the pants graph as a tool to prove that the mapping class group of a closed, orientable surface is finitely presented. The pants graph remains relevant for the study of the mapping class group, sitting between the marking graph and the curve graph. More precisely, there is a sequence of natural coarse lipschitz maps taking the marking graph via the pants graph to the curve graph.

A second motivation for studying the pants graph comes from Teichmüller theory. Brock showed that the pants graph can be interpreted as a combinatorial model for Teichmüller space with the Weil-Petersson metric.

In this talk I will introduce the pants graph, discuss some of its properties and state a few open questions.

Wed, 30 May 2018
14:00
L4

Falcon: Compact lattice-based signatures based on the hash & sign paradigm

Thomas Prest
(Thales Communications & Security)
Abstract

Post-quantum cryptography has been one of the most active subfields of
cryptography in the last few years. This is especially true today as
standardization efforts are currently underway, with no less than 69
candidate cryptographic schemes proposed.

In this talk, I will present one of these schemes: Falcon, a signature
scheme based on the NTRU class of structured lattices. I will focus on
mathematical aspects of Falcon: for example how we take advantage of the
algebraic structure to speed up some operations, or how relying on the
most adequate probability divergence can go a long way in getting more
efficient parameters "for free". The talk will be concluded with a few
open problems.

Tue, 29 May 2018
15:45
L4

Frobenius splittings of toric varieties

Milena Hering
(Edinburgh)
Abstract



Varieties admitting Frobenius splittings exhibit very nice properties.
For example, many nice properties of toric varieties can be deduced from
the fact that they are Frobenius split. Varieties admitting a diagonal
splitting exhibit even nicer properties. In this talk I will give an
overview over the consequences of the existence of such splittings and
then discuss criteria for toric varieties to be diagonally split.

Tue, 29 May 2018

14:30 - 15:00
L5

Optimisation of a Steam Turbine Blade Path

Jonathan Grant-Peters
(InFoMM)
Abstract

The vast majority of the world's electricity is generated by converting thermal energy into electric energy by use of a steam turbine. Siemens are one of the worlds leading manufacturers of such
turbines, and aim to design theirs to be as efficient as possible. Using an internally built software, Siemens can estimate the efficiency which would result from a turbine design. In this presentation, we present the approaches that have been taken to improve turbine design using mathematical optimisation software. In particular, we focus on the failings of the approach currently taken, the obstacles in place which make solving this problem difficult, and the approach we intend to take to find a locally optimal solution.

Tue, 29 May 2018

14:00 - 15:00
L5

Formulations of Inverse Problems

Chris Farmer
(Oxford University)
Abstract

This talk will review the main Tikhonov and Bayesian smoothing formulations of inverse problems for dynamical systems with partially observed variables and parameters. The main contenders: strong-constraint, weak-constraint and penalty function formulations will be described. The relationship between these formulations and associated optimisation problems will be revealed.  To close we will indicate techniques for maintaining sparsity and for quantifying uncertainty.

Tue, 29 May 2018

12:45 - 13:30
C5

Homogenisation Applied to Electrical Calcination of Carbon Materials

Caoimhe Rooney
Abstract

Calcination describes the heat treatment of anthracite particles in a furnace to produce a partially-graphitised material which is suitable for use in electrodes and for other met- allurgical applications. Electric current is passed through a bed of anthracite particles, here referred to as a coke bed, causing Ohmic heating and high temperatures which result in the chemical and structural transformation of the material.

Understanding the behaviour of such mechanisms on the scale of a single particle is often dealt with through the use of computational models such as DEM (Discrete Element Methods). However, because of the great discrepancy between the length scale of the particles and the length scale of the furnace, we can exploit asymptotic homogenisation theory to simplify the problem.  

In this talk, we will present some results relating to the electrical and thermal conduction through granular material which define effective quantities for the conductivities by considering a microscopic representative volume within the material. The effective quantities are then used as parameters in the homogenised macroscopic model to describe calcination of anthracite. 

Tue, 29 May 2018

12:00 - 13:00
C3

Towards an Integrated Understanding of Neural Networks

David Rolnick
(MIT)
Abstract


Neural networks underpin both biological intelligence and modern AI systems, yet there is relatively little theory for how the observed behavior of these networks arises. Even the connectivity of neurons within the brain remains largely unknown, and popular deep learning algorithms lack theoretical justification or reliability guarantees.  In this talk, we consider paths towards a more rigorous understanding of neural networks. We characterize and, where possible, prove essential properties of neural algorithms: expressivity, learning, and robustness. We show how observed emergent behavior can arise from network dynamics, and we develop algorithms for learning more about the network structure of the brain.

Mon, 28 May 2018

16:00 - 17:00
L4

Quantitative estimates for advective equation with degenerate anelastic constraint

Didier Bresch
(Universite de Savoie)
Abstract

In this work with P.--E. Jabin, we are interested in quantitative estimates for advective equations with an anelastic constraint in presence of vacuum. More precisely, we derive a stability estimate and obtain the existence of renormalized solutions. The method itself introduces weights which sole a dual equation and allow to propagate appropriatly weighted norms on the initial solution. In a second time, a control on where those weights may vanish allow to deduce global and precise quantitative regularity estimates.

Mon, 28 May 2018
15:45
L6

Topological field theory on r-spin surfaces and the Arf invariant

Lorant Szegedy
(University of Hamburg)
Abstract

We present a state-sum construction of TFTs on r-spin surfaces which
uses a combinatorial model of r-spin structures. We give an example of
such a TFT which computes the Arf invariant for r even. We use the
combinatorial model and this TFT to calculate diffeomorphism classes of
r-spin surfaces with parametrized boundary.

Mon, 28 May 2018

14:15 - 15:15
L4

The generalized Kahler potential

Marco Gualtieri
(Toronto)
Abstract

I will explain our recent description of the fundamental degrees of freedom underlying a generalized Kahler structure. For a usual Kahler
structure, it is well-known that the geometry is determined by a complex structure, a Kahler class, and the choice of a positive(1,1)-form in this class, which depends locally on only a single real-valued function: the Kahler potential. Such a description for generalized Kahler geometry has been sought since it was discovered in1984. We show that a generalized Kahler structure of symplectic type is determined by a pair of holomorphic Poisson manifolds, a
holomorphic symplectic Morita equivalence between them, and the choice of a positive Lagrangian brane bisection, which depends locally on
only a single real-valued function, which we call the generalized Kahler potential. To solve the problem we make use of, and generalize,
two main tools: the first is the notion of symplectic Morita equivalence, developed by Weinstein and Xu to study Poisson manifolds;
the second is Donaldson's interpretation of a Kahler metric as a real Lagrangian submanifold in a deformation of the holomorphic cotangent bundle.

 

Mon, 28 May 2018
12:45
L3

Modular properties of supersttring scattering amplitudes,

Michael Green
(Cambridge and QMUL)
Abstract

The coefficients of the low energy expansion of closed string amplitudes transform as automorphic functions under En(Z) U-duality groups.
 The seminar will give an overview of some features of the coefficients of low order terms in this expansion, which involve a fascinating interplay between multiple zeta values and certain elliptic and hyperelliptic generalisations, Langlands Eisenstein series for the En groups, and the ultraviolet behaviour of maximally supersymmetric supergravity. 

 
Fri, 25 May 2018

16:00 - 17:00
L1

North meets South Colloquium

Claudia Scheimbauer and Alberto Paganini
Abstract

Claudia Scheimbauer

Title: Quantum field theory meets higher categories

Abstract: Studying physics has always been a driving force in the development of many beautiful pieces of mathematics in many different areas. In the last century, quantum field theory has been a central such force and there have been several fundamentally different approaches using and developing vastly different mathematical tools. One of them, Atiyah and Segal's axiomatic approach to topological and conformal quantum field theories, provides a beautiful link between the geometry of "spacetimes” (mathematically described as cobordisms) and algebraic structures. Combining this approach with the physical notion of "locality" led to the introduction of the language of higher categories into the topic. The Cobordism Hypothesis classifies "fully local" topological field theories and gives us a recipe to construct examples thereof by checking certain algebraic conditions generalizing the existence of the dual of a vector space. I will give an introduction to the topic and very briefly mention on my own work on these "extended" topological field theories.

Alberto Paganini

Title: Shape Optimization with Finite Elements

Abstract: Shape optimization means looking for a domain that minimizes a target cost functional. Such problems are commonly solved iteratively by constructing a minimizing sequence of domains. Often, the target cost functional depends on the solution to a boundary value problem stated on the domain to be optimized. This introduces the difficulty of solving a boundary value problem on a domain that changes at each iteration. I will suggest how to address this issue using finite elements and conclude with an application from optics.

Fri, 25 May 2018

14:00 - 15:00
L3

Delay differential equations with threshold-type delays

Professor Stephen Gourley
(Dept of Mathematics University of Surrey)
Abstract

I will discuss some properties of delay differential equations in which the delay is not prescribed a-priori but is determined from a threshold condition. Sometimes the delay depends on the solution of the differential equation and its history. A scenario giving rise to a threshold type delay is that larval insects sometimes experience halting or slowing down of development, known as diapause, perhaps as a consequence of intra-specific competition among larvae at higher densities. Threshold delays can result in population dynamical models having some unusual properties, for example, if the model has an Allee effect then diapause may cause extinction in some parameter regimes even where the initial population is high.

Please  note that this talk is only suitable for Mathematicians.

Fri, 25 May 2018
12:00
N3.12

Persistent homology and the approximation of intrinsic volumes

Florian Pausinger
(Queen's University Belfast)
Abstract

Persistent homology is an algebraic tool for quantifying topological features of shapes and functions, which has recently found wide applications in data and shape analysis. In the first and introductory part of this talk I recall the underlying ideas and basic concepts of this very active field of research. In the second part, I plan to sketch a concrete application of this concept to digital image processing. 

Fri, 25 May 2018

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Bogdan Toader, Jessica Williams, Federico Danieli, Jonathan Peters
(Mathematical Institute)
Thu, 24 May 2018

16:00 - 17:00
L6

Voronoi summation and applications to subconvexity

Edgar Assing
(University of Bristol)
Abstract

We will briefly revisit Voronoi summation in its classical form and mention some of its many applications in number theory. We will then show how to use the global Whittaker model to create Voronoi type formulae. This new approach allows for a wide range of weights and twists. In the end we give some applications to the subconvexity problem of degree two $L$-functions.