Mon, 30 Jan 2017

14:15 - 15:15
L3

Scaling limits for randomly trapped random walks

BEN HAMBLY
(University of Oxford)
Abstract

A randomly trapped random walk on a graph is a simple continuous time random walk in which the holding time at a given vertex is an independent sample from a probability measure determined by the trapping landscape, a collection of probability measures indexed by the vertices.

This is a time change of the simple random walk. For the constant speed continuous time random walk, the landscape has an exponential distribution with rate 1 at each vertex. For the Bouchaud trap model it has an exponential random variable at each vertex but where the rate for the exponential is chosen from a heavy tailed distribution. In one dimension the possible scaling limits are time changes of Brownian motion and include the fractional kinetics process and the Fontes-Isopi-Newman (FIN) singular diffusion. We extend this analysis to put these models in the setting of resistance forms, a framework that includes finitely ramified fractals. In particular we will construct a FIN diffusion as the limit of the Bouchaud trap model and the random conductance model on fractal graphs. We will establish heat kernel estimates for the FIN diffusion extending what is known even in the one-dimensional case.

 

           

Mon, 30 Jan 2017

14:15 - 15:15
L4

Quivers, Dessins and Calabi-Yau

Yang-hui He
(City University London)
Abstract

We discuss how bipartite graphs on Riemann surfaces encapture a wealth of information about the physics and the mathematics of gauge theories. The
correspondence between the gauge theory, the underlying algebraic geometry of its space of vacua, the combinatorics of dimers and toric varieties, as
well as the number theory of dessin d'enfants becomes particularly intricate under this light.

Mon, 30 Jan 2017

12:45 - 13:45
L3

Automorphic String Amplitudes

Henrik Gustafsson
(Goteborg)
Abstract

Automorphic forms arise naturally when studying scattering amplitudes in toroidal compactifications of string theory. In this talk, I will summarize the conditions on four-graviton amplitudes from the literature required by U-duality, supersymmetry and string perturbation theory, which are satisfied by certain Eisenstein series on exceptional Lie groups. Physical information, such as instanton effects, are encoded in their Fourier coefficients on parabolic subgroups, which are, in general, difficult to compute. I will demonstrate a method for evaluating certain Fourier coefficients of interest in string theory. Based on arXiv:1511.04265, arXiv:1412.5625 and work in progress.
 

 
Fri, 27 Jan 2017
16:00
L1

Mathematics and Auction Design

Paul Klemperer
(University of Oxford)
Abstract

Mathematical methods are increasingly being used to design auctions. Paul Klemperer will talk about some of his own experience which includes designing the U.K.'s mobile phone licence auction that raised £22.5 billion, and a new auction that helped the Bank of England in the financial crisis. (The then-Governor, Mervyn King, described it as "a marvellous application of theoretical economics to a practical problem of vital importance".) He will also discuss further development of the latter auction using convex and "tropical" geometric methods.

Fri, 27 Jan 2017
14:15
C3

Moffatt eddies in valleys beneath ice sheets

Colin Meyer
(Harvard University)
Abstract

Radar data from both Greenland and Antarctica show folds and other disruptions to the stratigraphy of the deep ice. The mechanisms by which stratigraphy deforms are related to the interplay between ice flow and topography. Here we show that when ice flows across valleys or overdeepenings, viscous overturnings called Moffatt eddies can develop. At the base of a subglacial valley, the shear on the valley walls is transfered through the ice, forcing the ice to overturn. To understand the formation of these eddies, we numerically solve the non-Newtonian Stokes equations with a Glen's law rheology to determine the critical valley angle for the eddies to form. The decrease in ice viscosity with shear enhances shear localization and, therefore, Moffatt eddies form in smaller valley angles (steeper slopes) than in a fluid that does not localize shear, such as a Newtonian fluid. When temperature is incorporated into the ice rheology, the warmer basal ice is less viscous and eddies form in larger valley angles (shallower slopes) than in isothermal ice. We apply our simulations to the Gamburtsev Subglacial Mountains and solve for the ice flow over radar-determined topography. These simulations show Moffatt eddies on the order of 100 meters tall in the deep subglacial valleys.

Fri, 27 Jan 2017

13:00 - 14:00
L6

Pointwise Arbitrage Pricing Theory in Discrete Time

Jan Obloj
(Oxford University)
Abstract


We pursue robust approach to pricing and hedging in mathematical
finance. We develop a general discrete time setting in which some
underlying assets and options are available for dynamic trading and a
further set of European options, possibly with varying maturities, is
available for static trading. We include in our setup modelling beliefs by
allowing to specify a set of paths to be considered, e.g.
super-replication of a contingent claim is required only for paths falling
in the given set. Our framework thus interpolates between
model-independent and model-specific settings and allows to quantify the
impact of making assumptions. We establish suitable FTAP and
Pricing-Hedging duality results which include as special cases previous
results of Acciaio et al. (2013), Burzoni et al. (2016) as well the
Dalang-Morton-Willinger theorem. Finally, we explain how to treat further
problems, such as insider trading (information quantification) or American
options pricing.
Based on joint works with Burzoni, Frittelli, Hou, Maggis; Aksamit, Deng and Tan.
 

Fri, 27 Jan 2017

11:45 - 12:45
L4

InFoMM CDT Group Meeting

Lindon Roberts, Fabian Ying, Ben Sloman
(Mathematical Institute)
Thu, 26 Jan 2017
17:30
L6

Existentially definable henselian valuation rings with p-adic residue fields

Arno Fehm
(Manchester)
Abstract

In joint work with Sylvy Anscombe we had found an abstract
valuation theoretic condition characterizing those fields F for which
the power series ring F[[t]] is existentially 0-definable in its
quotient field F((t)). In this talk I will report on recent joint work
with Sylvy Anscombe and Philip Dittmann in which the study of this
condition leads us to some beautiful results on the border of number
theory and model theory. In particular, I will suggest and apply a
p-adic analogue of Lagrange's Four Squares Theorem.

Thu, 26 Jan 2017

16:00 - 17:00
C5

The Loop Theorem of Papakyriakopoulos

Gareth Wilkes
((Oxford University))
Abstract

The study of 3-manifolds is founded on the strong connection between algebra and topology in dimension three. In particular, the sine qua non of much of the theory is the Loop Theorem, stating that for any embedding of a surface into a 3-manifold, a failure to be injective on the fundamental group is realised by some genuine embedding of a disc. I will discuss this theorem and give a proof of it.

Thu, 26 Jan 2017

16:00 - 17:00
L3

Flux-dependent graphs for metabolic networks

Mariano Beguerisse Díaz
(University of Oxford)
Abstract

Cells adapt their metabolic state in response to changes in the environment.  I will present a systematic framework for the construction of flux graphs to represent organism-wide metabolic networks.  These graphs encode the directionality of metabolic fluxes via links that represent the flow of metabolites from source to target reactions.  The weights of the links have a precise interpretation in terms of probabilities or metabolite flow per unit time. The methodology can be applied both in the absence of a specific biological context, or tailored to different environmental conditions by incorporating flux distributions computed from constraint-based modelling (e.g., Flux-Balance Analysis). I will illustrate the approach on the central carbon metabolism of Escherichia coli, revealing drastic changes in the topological and community structure of the metabolic graphs, which capture the re-routing of metabolic fluxes under each growth condition.

By integrating Flux Balance Analysis and tools from network science, our framework allows for the interrogation of environment-specific metabolic responses beyond fixed, standard pathway descriptions.

Thu, 26 Jan 2017

16:00 - 17:00
L6

CANCELED: Wach modules, regulator maps, and ε-isomorphisms in families

Otmar Venjakob
(Heidelberg)
Abstract

In this talk on joint work with REBECCA BELLOVIN we discuss the “local ε-isomorphism” conjecture of Fukaya and Kato for (crystalline) families of G_{Q_p}-representations. This can be regarded as a local analogue of the global Iwasawa main conjecture for families, extending earlier work of Kato for rank one modules, of Benois and Berger for crystalline representations with respect to the cyclotomic extension as well as of Loeffler, Venjakob and Zerbes for crystalline representations with respect to abelian p-adic Lie extensions of Q_p. Nakamura has shown Kato’s - conjecture for (ϕ,\Gamma)-modules over the Robba ring, which means in particular only after inverting p, for rank one and trianguline families. The main ingredient of (the integrality part of) the proof consists of the construction of families of Wach modules generalizing work of Wach and Berger and following Kisin’s approach via a corresponding moduli space.
 

Thu, 26 Jan 2017

16:00 - 17:30
L4

tba

Ulrich Horst
(Humboldt Universität zu Berlin)
Thu, 26 Jan 2017
14:00
L4

A Ringel duality formula inspired by Knörrer equivalences for 2d cyclic quotient singularities

Martin Kalck
(Edinburgh)
Abstract

We construct triangle equivalences between singularity categories of
two-dimensional cyclic quotient singularities and singularity categories of
a new class of finite dimensional local algebras, which we call Knörrer
invariant algebras. In the hypersurface case, we recover a special case of Knörrer’s equivalence for (stable) categories of matrix factorisations.
We’ll then explain how this led us to study Ringel duality for
certain (ultra strongly) quasi-hereditary algebras.
This is based on joint work with Joe Karmazyn.

Thu, 26 Jan 2017

14:00 - 15:00
L5

New challenges in the numerical solution of large-scale inverse problems

Dr Silvia Gazzola
(University of Bath)
Abstract

Inverse problems are ubiquitous in many areas of Science and Engineering and, once discretised, they lead to ill-conditioned linear systems, often of huge dimensions: regularisation consists in replacing the original system by a nearby problem with better numerical properties, in order to find meaningful approximations of its solution. In this talk we will explore the regularisation properties of many iterative methods based on Krylov subspaces. After surveying some basic methods such as CGLS and GMRES, innovative approaches based on flexible variants of CGLS and GMRES will be presented, in order to efficiently enforce nonnegativity and sparsity into the solution.

Thu, 26 Jan 2017
12:00
L5

Patlak-Keller-Segel equations

Jan Burczak
(University of Oxford)
Abstract

Patlak-Keller-Segel equations 
\[
\begin{aligned}
u_t - L u &= - \mathop{\text{div}\,} (u \nabla v) \\
v_t - \Delta v &= u,
\end{aligned}
\]
where L is a dissipative operator, stem from mathematical chemistry and mathematical biology.
Their variants describe, among others, behaviour of chemotactic populations, including feeding strategies of zooplankton or of certain insects. Analytically, Patlak-Keller-Segel equations reveal quite rich dynamics and a delicate global smoothness vs. blowup dichotomy. 
We will discuss smoothness/blowup results for popular variants of the equations, focusing on the critical cases, where dissipative and aggregative forces seem to be in a balance. A part of this talk is based on joint results with Rafael Granero-Belinchon (Lyon).

Wed, 25 Jan 2017

11:00 - 12:00
N3.12

TBC

Craig Smith
(University of Oxford)
Tue, 24 Jan 2017
14:30
L6

Gowers Norms of the Thue-Morse and Other Automatic Sequences

Jakub Konieczny
(Oxford University)
Abstract

The Thue-Morse sequence is perhaps the simplest example of an automatic sequence. Various pseudorandomness properties of this sequence have long been studied. During the talk, I will discuss a new result in this direction, asserting that the Gowers uniformity norms of the Thue-Morse sequence are small in a quantitative sense. Similar results hold for the Rudin-Shapiro sequence, as well as for a much wider class of automatic sequences which will be introduced during the talk.

The talk is partially based on joint work with Jakub Byszewski.

Tue, 24 Jan 2017
14:30
L5

On the spectral problem for trivariate functions

Behnam Hashemi
(Mathematical Institute)
Abstract


Using a variational approach applied to generalized Rayleigh functionals, we extend the concepts of singular values and singular functions to trivariate functions defined on a rectangular parallelepiped. We also consider eigenvalues and eigenfunctions for trivariate functions whose domain is a cube. For a general finite-rank trivariate function, we describe an algorithm for computing the canonical polyadic (CP) decomposition, provided that the CP factors are linearly independent in two variables. All these notions are computed using Chebfun. Application in finding the best rank-1 approximation of trivariate functions is investigated. We also prove that if the function is analytic and two-way orthogonally decomposable (odeco), then the CP values decay geometrically, and optimal finite-rank approximants converge at the same rate.
 

Tue, 24 Jan 2017

14:15 - 15:15
L4

An Euler-Poincare formula for a depth zero Bernstein projector

Allen Moy
(Hong Kong University of Science and Technology)
Abstract


Work of Bezrukavnikov-Kazhdan-Varshavsky uses an equivariant system of trivial idempotents of Moy-Prasad groups to obtain an
Euler-Poincare formula for the r-depth Bernstein projector. We establish an Euler-Poincare formula for the projector to an individual depth zero Bernstein component in terms of an equivariant system of Peter-Weyl idempotents of parahoric subgroups P associated to a block of the reductive quotient of P.  This work is joint with Dan Barbasch and Dan Ciubotaru.