12:00
12:00
11:00
Non-reduced schemes and Zariski Geometries
Abstract
Using results by Eisenbud, Schoutens and Zilber I will propose a model theoretic structure that aims to capture the algebra (or geometry) of a non reduced scheme over an algebraically closed field.
16:00
15:00
Fast fully homomorphic encryption (FHE) based on GSW and its ring variants
Abstract
In this seminar, we present a fast fully homomorphic encryption (FHE) based on GSW and its ring variants. The cryptosystem relies on the hardness of lattice problems in the unique domain (e.g. the LWE family). After a brief presentation of these lattice problems, with a few notes on their asymptotic and practical average case hardness, we will present our homomorphic cryptosystem TFHE, based on a ring variant of GSW. TFHE can operate in two modes: The first one is a leveled homomorphic mode, which has the ability to evaluate deterministic automata (or branching programs) at a rate of 1 transition every 50microseconds. For the second mode, we also show that this scheme can evaluate its own decryption in only 20milliseconds, improving on the the construction by Ducas-Micciancio, and of Brakerski-Perlman. This makes the scheme fully homomorphic by Gentry's bootstrapping principle, and for instance, suitable for representing fully dynamic encrypted databases in the cloud.
A continuum of expanders.
Abstract
An expander is a family of finite graphs of uniformly bounded degree, increasing number of vertices and Cheeger constant bounded away from zero. They occur throughout mathematics and computer science; the most famous constructions of expanders rely on powerful results in geometric group theory and number theory, while expanders are used in everything from error-correcting codes, through disproving the strongest version of the Baum-Connes conjecture, to affine sieve theory and the twin prime, Mersenne prime and Hardy-Littlewood conjectures.
However, very little was known about how different the geometry of two expanders could be. This question was raised by Ostrovskii in 2013, and a year later Mendel and Naor gave the first example of two 'distinct' expanders.
In this talk I will construct a continuum of expanders which are, in a certain sense, geometrically incomparable. Once the existence of a single expander is accepted, the remainder of the proof is a heady mix of counting, addition, multiplication, and just for the experts, a little bit of division. Two very different - and very interesting - continuums of 'distinct' expanders have since been constructed by Khukhro-Valette and Das.
Group actions on quiver moduli spaces
Abstract
We consider two types of actions on moduli spaces of quiver representations over a field k and we decompose their fixed loci using group cohomology. First, for a perfect field k, we study the action of the absolute Galois group of k on the points of this quiver moduli space valued in an algebraic closure of k; the fixed locus is the set of k-rational points and we obtain a decomposition of this fixed locus indexed by the Brauer group of k. Second, we study algebraic actions of finite groups of quiver automorphisms on these moduli spaces; the fixed locus is decomposed using group cohomology and each component has a modular interpretation. If time permits, we will describe the symplectic and holomorphic geometry of these fixed loci in hyperkaehler quiver varieties. This is joint work with Florent Schaffhauser.
14:30
Extremal Problems on Colourings in Cubic Graphs via the Potts Model
Abstract
We prove tight upper and lower bounds on an observable of the antiferromagnetic Potts model. From this we deduce the case d=3 of a conjecture of Galvin and Tetali on maximising the number of proper colourings in d-regular graphs.
Growth, generation, and conjectures of Gowers and Viola
Abstract
I will discuss recent results in finite simple groups. These include growth, generation (with a number theoretic flavour), and conjectures of Gowers and Viola on mixing and complexity whose proof requires representation theory as a main tool.
14:00
Perturbation of higher-order singular values
Abstract
Joint work with Wolfgang Hackbusch and Daniel Kressner
Symmetry-breaking and nonlocal reaction-diffusion mechanisms in bioactive porous media, or "How not to model porous media"
Between incompressible and compressible flows. A case of regular solutions.
Abstract
I will talk about connections between the compressible and incompressible Navier-Stokes systems. In case of the compressible model, as the bulk (volume) viscosity is very high, the divergence of the velocity becomes small, in the limit it is zero and we arrive at the case of incompressible system. An important role here is played by the inhomogeneous version of the classical Navier-Stokes equations. I plan to discuss analytical obstacle appearing within the analysis. The considerations are done in the framework of regular solutions in Besov and Sobolev spaces. The results which will be discussed are joint with Raphael Danchin from Paris.
Bloch functions, asymptotic variance, and geometric zero packing
Abstract
Motivated by a problem in quasiconformal mapping, we introduce a new type of problem in complex analysis, with its roots in the mathematical physics of the Bose-Einstein condensates in superconductivity.The problem will be referred to as \emph{geometric zero packing}, and is somewhat analogous to studying Fekete point configurations.The associated quantity is a density, denoted $\rho_\C$ in the planar case, and $\rho_{\mathbb{H}}$ in the case of the hyperbolic plane.We refer to these densities as \emph{discrepancy densities for planar and hyperbolic zero packing}, respectively, as they measure the impossibility of atomizing the uniform planar and hyperbolic area measures.The universal asymptoticvariance $\Sigma^2$ associated with the boundary behavior of conformal mappings with quasiconformal extensions of small dilatation is related to one of these discrepancy densities: $\Sigma^2= 1-\rho_{\mathbb{H}}$.We obtain the estimates$2.3\times 10^{-8}<\rho_{\mathbb{H}}\le0.12087$, where the upper estimate is derived from the estimate from below on $\Sigma^2$ obtained by Astala, Ivrii, Per\"al\"a, and Prause, and the estimate from below is much more delicate.In particular, it follows that $\Sigma^2<1$, which in combination with the work of Ivrii shows that the maximal fractal dimension of quasicircles conjectured by Astala cannot be reached.Moreover, along the way, since the universal quasiconformal integral means spectrum has the asymptotics$\mathrm{B}(k,t)\sim\frac14\Sigma^2 k^2|t|^2$ for small $t$ and $k$, the conjectured formula $\mathrm{B}(k,t)=\frac14k^2|t|^2$ is not true.As for the actual numerical values of the discrepancy density $\rho_\C$, we obtain the estimate from above $\rho_\C\le0.061203\ldots$ by using the equilateral triangular planar zero packing, where the assertion that equality should hold can be attributed to Abrikosov. The values of $\rho_{\mathbb{H}}$ is expected to be somewhat close to the value of $\rho_\C$.
C-equivariant elliptic cohomology when C is a fusion category
Abstract
Elliptic cohomology is a family of generalised cohomology theories
$Ell_E^*$ parametrised by an elliptic curve $E$ (over some ring $R$).
Just like many other cohomology theories, elliptic cohomology admits
equivariant versions. In this talk, I will recall an old conjectural
description of elliptic cohomology, due to G. Segal, S. Stolz and P.
Teichner. I will explain how that conjectural description led me to
suspect that there should exist a generalisation of equivariant
elliptic cohomology, where the group of equivariance gets replaced by
a fusion category. Finally, I will construct $C$-equivariant elliptic
cohomology when $C$ is a fusion category, and $R$ is a ring of
characteristc zero.
A Statistical Model of Urban Retail Structure
Abstract
One of the challenges of 21st-century science is to model the evolution of complex systems. One example of practical importance is urban structure, for which the dynamics may be described by a series of non-linear first-order ordinary differential equations. Whilst this approach provides a reasonable model of urban retail structure, it is somewhat restrictive owing to uncertainties arising in the modelling process.
We address these shortcomings by developing a statistical model of urban retail structure, based on a system of stochastic differential equations. Our model is ergodic and the invariant distribution encodes our prior knowledge of spatio-temporal interactions. We proceed by performing inference and prediction in a Bayesian setting, and explore the resulting probability distributions with a position-specific metrolpolis-adjusted Langevin algorithm.
The symplectic geometry of twistor spaces
Abstract
Twistor spaces were originally devised as a way to use techniques of complex geometry to study 4-dimensional Riemannian manifolds. In this talk I will show that they also make it possible to apply techniques from symplectic geometry. In the first part of the talk I will explain that when the 4-manifold satisfies a certain curvature inequality, its twistor space carries a natural symplectic structure. In the second part of the talk I will discuss some results in Riemannian geometry which can be proved via the symplectic geometry of the twistor space. Finally, if there is time, I will end with some speculation
about potential future applications, involving Poincaré—Einstein 4-manifolds, minimal surfaces and distinguished closed curves in their conformal infinities
Dualities of Deformed N=2 SCFTs from torus knots and links
Abstract
We study D3 brane theories that are described as deformations of N=2 SCFTs. They arise at the self-intersection of a 7-brane in F-Theory. As we shall explain, the associated string junctions and their monodromies can be studied via torus knots or links. The monodromy reduces (potentially different) flavor algebras of dual deformations of N=2 theories and projects out charged states, leading to N=1 SCFTs. We propose an explanation for these effects in terms of an electron-monopole-dyon condensate.
InFoMM The Reddick Lecture
Abstract
Data science: The secret to unlocking operational performance within the UK’s largest retail supply chain
Chris Reddick was instrumental in setting up the InFoMM CDT. After helping secure the EPSRC funding he chaired the Industrial Engagement Committee and supported the CDT in all its Industrial relations. The success of the CDT, as evidenced by the current size of the industrial partnership and the vibrant programme we have developed, is in no small part due to Chris' charm, vision, and tenacity.
Why bother with divisional training and development?
Abstract
This session will look at the range of courses available to early career researchers and graduate students from MPLS. It will also discuss the benefits of training and development for researchers and how it can help you in enhancing your career inside and outside academia.
Connections between the theory of evolution and algorithmic information theory
On certain hyperplane arrangements and nilpotent orbits of complex simple Lie algebras
Abstract
In this talk, I wish to address the problem of evaluating an integral on an n-dimensional complex vector space whose n-form of integration has poles along a union of (affine) hyperplanes, following the work of Heckman and Opdam. Such situation arise often in the harmonic analysis of a reductive group and when that is the case, the singular hyperplane arrangement in question is dictated by the root system of the group. I will then try to explain how we can relate the intersection lattice of the hyperplane arrangement with nilpotent orbits of a complex Lie algebra related to the root system in question.
P-adic representations attached to vector bundles on smooth complete p-adic varieties
Abstract
We discuss vector bundles with numerically stable reduction on smooth complete varieties over a p-adic number field and sketch the construction of associated p-adic representations of the geometric fundamental group. On projective varieties, such bundles are semistable with respect to every polarization and have vanishing Chern classes. One of the main problems in the construction consisted in getting rid of infinitely many obstruction classes. This is achieved by adapting a theory of Bhatt based on de Jongs's alteration method. One also needs control over numerically flat bundles on arbitrary singular varieties over finite fields. The singular Riemann Roch Theorem of Baum Fulton Macpherson is a key ingredient for this step. This is joint work with Annette Werner.
PDE techniques for network problems
Abstract
In recent years, ideas from the world of partial differential equations (PDEs) have found their way into the arena of graph and network problems. In this talk I will discuss how techniques based on nonlinear PDE models, such as the Allen-Cahn equation and the Merriman-Bence-Osher threshold dynamics scheme can be used to (approximately) detect particular structures in graphs, such as densely connected subgraphs (clustering and classification, minimum cuts) and bipartite subgraphs (maximum cuts). Such techniques not only often lead to fast algorithms that can be applied to large networks, but also pose interesting theoretical questions about the relationships between the graph models and their continuum counterparts, and about connections between the different graph models.