Thu, 23 Oct 2014

16:00 - 17:00
C2

Manifolds of positive curvature

Alejandro Betancourt
(Oxford University)
Abstract

Historically, the study of positively curved manifolds has always been challenging. There are many reasons for this, but among them is the fact that the existence of a metric of positive curvature on a manifold imposes strong topological restrictions. In this talk we will discuss some of these topological implications and we will introduce the main results in this area. We will also present some recent results that relate positive curvature to the smooth structure of the manifold.

Thu, 23 Oct 2014

16:00 - 17:30
L4

4pm (Joint Nomura-OMI Seminar) - The Use of Randomness in Time Series Analysis

Professor Piotr Fryzlewicz
(LSE)
Abstract
This is an exploratory talk in which we describe different potential 
uses of randomness in time series analysis.

In the first part, we talk about Wild Binary Segmentation for change-point detection, where randomness is used as a device for sampling from the space of all possible contrasts (change-point detection statistics) in order to reduce the computational complexity from cubic to just over linear in the number of observations, without compromising on the accuracy of change-point estimates. We also discuss an interesting related measure of change-point certainty/importance, and extensions to more general nonparametric problems.

In the second part, we use random contemporaneous linear combinations of time series panel data coming from high-dimensional factor models and argue that this gives the effect of "compressively sensing" the components of the multivariate time series, often with not much loss of information but with reduction in the dimensionality of the model.

In the final part, we speculate on the use of random filtering in time series analysis. As an illustration, we show how the appropriate use of this device can reduce the problem of estimating changes in the autocovariance structure of the process to the problem of estimating changes in variance, the latter typically being an easier task.
 
Thu, 23 Oct 2014

14:00 - 15:00
L4

Towards the compatibility of Geometric Langlands with the extended Whittaker model

Dario Beraldo
(University of Oxford)
Abstract

Let $G$ be a connected reductive group and $X$ a smooth complete curve, both defined over an algebraically closed field of characteristic zero. Let $Bun_G$ denote the stack of $G$-bundles on $X$. In analogy with the classical theory of Whittaker coefficients for automorphic functions, we construct a “Fourier transform” functor, called $coeff_{G}$, from the DG category of D-modules on $Bun_G$ to a certain DG category $Wh(G, ext)$, called the extended Whittaker category. Combined with work in progress by other mathematicians and the speaker, this construction allows to formulate the compatibility of the Langlands duality functor  $$\mathbb{L}_G : \operatorname{IndCoh}_{N}(LocSys_{\check{G}} ) \to D(Bun_G)$$ with the Whittaker model. For $G = GL_n$ and $G = PGL_n$, we prove that $coeff_G$ is fully faithful. This result guarantees that, for those groups, $\mathbb{L}_G$ is unique (if it exists) and necessarily fully faithful.

Thu, 23 Oct 2014

14:00 - 15:00
L5

Stabilised finite element methods for non symmetric, non coercive and ill-posed problems

Professor Erik Burman
(UCL)
Abstract

In numerical analysis the design and analysis of computational methods is often based on, and closely linked to, a well-posedness result for the underlying continuous problem. In particular the continuous dependence of the continuous model is inherited by the computational method when such an approach is used. In this talk our aim is to design a stabilised finite element method that can exploit continuous dependence of the underlying physical problem without making use of a standard well-posedness result such as Lax-Milgram's Lemma or The Babuska-Brezzi theorem. This is of particular interest for inverse problems or data assimilation problems which may not enter the framework of the above mentioned well-posedness results, but can nevertheless satisfy some weak continuous dependence properties. First we will discuss non-coercive elliptic and hyperbolic equations where the discrete problem can be ill-posed even for well posed continuous problems and then we will discuss the linear elliptic Cauchy problem as an example of an ill-posed problem where there are continuous dependence results available that are suitable for the framework that we propose.

Thu, 23 Oct 2014

12:00 - 13:00
L4

J.C. Maxwell's 1879 Paper on Thermal Transpiration and Its Relevance to Contemporary PDE

Marshall Slemrod
(University of Wisconsin - Madison)
Abstract
In his 1879 PRSL paper on thermal transpiration J.C.MAXWELL addressed the problem of steady flow of a dilute gas over a flat boundary. The experiments of KUNDT and WARBURG had demonstrated that if the boundary is heated with a temperature gradient , say increasing from left to right, the gas will flow from left to right. On the other hand MAXWELL using the continuum mechanics of his (and indeed our) day solved the ( compressible) NAVIER- STOKES- FOURIER equations for balance of mass, momentum, and energy and found a solution: the gas has velocity equal zero. The Japanese fluid mechanist Y. SONE has termed this the incompleteness of fluid mechanics. In this talk I will sketch MAXWELL's program and how it suggests KORTEWEG's 1904 theory of capillarity to be a reasonable “ completion” of fluid mechanics. Then to push matters in the analytical direction I will suggest that these results show that HILBERT's 1900 goal expressed in his 6th problem of passage from the BOLTZMANN equation to the EULER equations as the KNUDSEN number tends to zero in unattainable.
Wed, 22 Oct 2014
16:00
C2

Algebraic characterisation of convergence

Robert Leek
(Oxford)
Abstract
 
Using an internal characterisation of radiality or
> Fréchet-Urysohness, we can translate this property into other structural
> forms for many problems and classes of spaces. In this talk, I will
> recap this internal characterisation and translate the properties of
> being radial / Fréchet-Urysohn (Stone-Čech, Hewitt) into the prime ideal
> structure on C*(X) / C(X) for Tychonoff spaces, with a view to reaching
> out to other parts of algebra, e.g. C*-algebras, algebraic geometry, etc.
Wed, 22 Oct 2014
12:30
N3.12

How badly can the Hasse principle fail?

Francesca Balestrieri
(Oxford University)
Abstract

Given any family of varieties over a number field, if we have that the existence of local points everywhere is equivalent to the existence of a global point (for each member of the family), then we say that the family satisfies the Hasse principle. Of more interest, in this talk, is the case when the Hasse principle fails: we will give an overview of the "geography" of the currently known obstructions.

Tue, 21 Oct 2014
15:45
L4

Hamiltonian and quasi-Hamiltonian reduction via derived symplectic geometry

Pavel Safronov
(Oxford)
Abstract

I will explain an approach to Hamiltonian reduction using derived
symplectic geometry. Roughly speaking, the reduced space can be
presented as an intersection of two Lagrangians in a shifted symplectic
space, which therefore carries a natural symplectic structure. A slight
modification of the construction gives rise to quasi-Hamiltonian
reduction. This talk will also serve as an introduction to the wonderful
world of derived symplectic geometry where statements that morally ought
to be true are indeed true.

Tue, 21 Oct 2014

14:30 - 15:30
L6

Spanning Trees in Random Graphs

Richard Montgomery
(University of Cambridge)
Abstract
Given a tree $T$ with $n$ vertices, how large does $p$ need to be for it to be likely that a copy of $T$ appears in the binomial random graph $G(n,p)$? I will discuss this question, including recent work confirming a conjecture which gives a good answer to this question for trees with bounded maximum degree.
Tue, 21 Oct 2014

14:00 - 14:30
L5

Software Carpentry in Computational Science

Aron Ahmadia
(US Army Engineering Research and Development Center)
Abstract
This brief lecture will highlight several best-practice observations and
research for writing software for mathematical research, drawn from a
number of sources, including; Best Practices for Scientific Computing
[BestPractices], Code Complete [CodeComplete], and personal observation
from the presenter.  Specific focus will be given to providing the
definition of important concepts, then describing how to apply them
successfully in day-to-day research settings.  Following the outline from
Best Practices, we will cover the following topics:

* Write Programs for People, Not Computers
* Let the Computer Do the Work
* Make Incremental Changes
* Don't Repeat Yourself (or Others)
* Plan for Mistakes
* Optimize Software Only after It Works Correctly
* Document Design and Purpose, Not Mechanics
* Collaborate

[BestPractices]
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001745
[CodeComplete] http://www.cc2e.com/Default.aspx
Tue, 21 Oct 2014

12:45 - 13:45
C4

TBA

Alexander Vervuurt, Jochen Kursawe, Linus Schumacher
(Mathematical Institute, Oxford)
Mon, 20 Oct 2014

17:00 - 18:00
L6

Asymptotic modelling of the fluid flow with a pressure-dependent viscosity

Igor Pazanin
(University of Zagreb)
Abstract
Our goal is to present recent results on the stationary motion of incompressible viscous fluid with a pressure-dependent viscosity. Under general assumptions on the viscosity-pressure relation (satisfied by the Barus formula and other empiric laws), first we discuss the existence and uniqueness of the solution of the corresponding boundary value problem. The main part of the talk is devoted to asymptotic analysis of such system in thin domains naturally appearing in the applications. We address the problems of fluid flow in pipe-like domains and also study the behavior of a lubricant flowing through a narrow gap. In each setting we rigorously derive new asymptotic model describing the effective flow. The key idea is to conveniently transform the governing problem into the Stokes system with small nonlinear perturbation.
This is a joint work with Eduard Marusic-Paloka (University of Zagreb).
Mon, 20 Oct 2014

16:00 - 17:00
C2

Galois Theory and the S-unit Equation

Netan Dogra
(Oxford)
Abstract
For a finite set of primes S, the S-unit equation asks for solutions to a+b=1, with
a and b rational numbers which are units at all primes not in S. By a theorem of Siegel,
for any given S this equation will only have finitely many solutions. This talk will review
the relation between this equation and other Diophantine problems, and will explain a
Galois-theoretic approach to proving Siegel's theorem.
Mon, 20 Oct 2014

15:45 - 16:45
C6

Constructing and classifying TQFTs via surgery

Andras Juhasz
(Oxford)
Abstract

 We describe a framework for defining and classifying TQFTs via
surgery. Given a functor 
from the category of smooth manifolds and diffeomorphisms to
finite-dimensional vector spaces, 
and maps induced by surgery along framed spheres, we give a set of axioms
that allows one to assemble functorial coboridsm maps. 
Using this, we can reprove the correspondence between (1+1)-dimensional
TQFTs and commutative Frobenius algebras, 
and classify (2+1)-dimensional TQFTs in terms of a new structure, namely
split graded involutive nearly Frobenius algebras 
endowed with a certain mapping class group representation. The latter has
not appeared in the literature even in conjectural form. 
This framework is also well-suited to defining natural cobordism maps in
Heegaard Floer homology.

 

Mon, 20 Oct 2014

14:15 - 16:30
L5

Mirror symmetry for varieties of general type

Mark Gross
(Cambridge)
Abstract
I will discuss joint work with Ludmil Katzarkov and Helge Ruddat. Given a hypersurface X in a toric variety of positive Kodaira dimension, (with a certain number of hypotheses) we construct an object which we believe can be viewed as the mirror of X. In particular, it exhibits the usual interchange of Hodge numbers expected in mirror symmetry. This may seem puzzling at first. For example, a curve of genus g would be expected to have a mirror such that h^{0,0}=g, which is not possible for a variety. However, our mirror is a singular scheme Y along with a perverse sheaf F, whose cohomology carries a mixed Hodge structure. It then makes sense to compute Hodge numbers for F, and we find the traditional exchange of Hodge numbers.
Mon, 20 Oct 2014

12:00 - 13:00
L5

Calabi-Yau Fourfolds, F-theory and Fluxes

Andreas Braun
(Oxford)
Abstract

I will discuss several recent developments regarding the construction of fluxes for F-theory on Calabi-Yau fourfolds. Of particular importance to the effective physics is the structure of the middle (co)homology groups, on which new results are presented. Fluxes dynamically drive the fourfold to Noether-Lefschetz loci in moduli space. While the structure of such loci is generally unknown for Calabi-Yau fourfolds, this problem can be answered in terms of arithmetic for K3 x K3 and a classification is possible.

Thu, 16 Oct 2014

17:30 - 18:30
L6

On the o-minimal Hilbert's fifth problem

Mario Edmundo
(Universidade de Lisboa)
Abstract

The fundamental results about definable groups in o-minimal structures all suggested a deep connection between these groups and Lie groups. Pillay's conjecture explicitly formulates this connection in analogy to Hilbert's fifth problem for locally compact topological groups, namely, a definably compact group is, after taking a suitable the quotient by a "small" (type definable of bounded index) subgroup, a Lie group of the same dimension. In this talk we will report on the proof of this conjecture in the remaining open case, i.e. in arbitrary o-minimal structures. Most of the talk will be devoted to one of the required tools, the formalism of the six Grothendieck operations of o-minimals sheaves, which might be useful on it own. 

Thu, 16 Oct 2014

16:00 - 17:00
C2

Yau's Proof of the Calabi Conjecture

Roland Grinis
(Oxford University)
Abstract

The Calabi conjecture, posed in 1954 and proved by Yau in 1976, guaranties the existence of Ricci-flat Kahler metrics on compact Kahler manifolds with vanishing first Chern class, providing examples of the so called Calabi-Yau manifolds. The latter are of great importance to the fields of Riemannian Holonomy Groups, having Hol0 as a subgroup of SU; Calibrated Geometry, more precisely Special Lagrangian Geometry; and to String theory with the discovery of the phenomenon of Mirror Symmetry (to mention a few!). In the talk, we will discuss the necessary background to formulate the Calabi conjecture and explain some of the main ideas behind its proof by Yau, which itself is a jewel from the point of view of non-linear PDEs.