Thu, 12 Jun 2014

16:00 - 17:00
C6

Spectral Networks and Abelianization

Omar Kidwai
(Oxford University)
Abstract

Spectral networks are certain collections of paths on a Riemann surface, introduced by Gaiotto, Moore, and Neitzke to study BPS states in certain N=2 supersymmetric gauge theories. They are interesting geometric objects in their own right, with a number of mathematical applications. In this talk I will give an introduction to what a spectral network is, and describe the "abelianization map" which, given a spectral network, produces nice "spectral coordinates" on the appropriate moduli space of flat connections. I will show that coordinates obtained in this way include a variety of previously known special cases (Fock-Goncharov coordinates and Fenchel-Nielsen coordinates), and mention at least one reason why generalising them in this way is of interest.

Thu, 12 Jun 2014

16:00 - 17:00
L5

A homotopy exact sequence and unipotent fundamental groups over function fields

Christopher Lazda
(Imperial College London)
Abstract

If X/F is a smooth and proper variety over a global function field of

characteristic p, then for all l different from p the co-ordinate ring of the l-adic

unipotent fundamental group is a Galois representation, which is unramified at all

places of good reduction. In this talk, I will ask the question of what the correct

p-adic analogue of this is, by spreading out over a smooth model for C and proving a

version of the homotopy exact sequence associated to a fibration. There is also a

version for path torsors, which enables me to define an function field analogue of

the global period map used by Minhyong Kim to study rational points.

Thu, 12 Jun 2014

16:00 - 17:30
L4

CAPM, Stochastic Dominance, and prospect theory

Haim Levy
(Hebrew University of Jerusalem)
Abstract

Despite the theoretical and empirical criticisms of the M-V and CAPM, they are found virtually in all curriculums. Why?

Thu, 12 Jun 2014
16:00
L3

Landing or take-off of fluids and bodies

Frank Smith
(UCL)
Abstract

The talk is on impacts, penetrations and lift-offs involving bodies and fluids, with applications that range from aircraft and ship safety and our tiny everyday scales of splashing and washing, up to surface movements on Mars. Several studies over recent years have addressed different aspects of air-water effects and fluid-body interplay theoretically. Nonlinear interactions and evolutions are key here and these are to be considered in the presentation. Connections with experiments will also be described.

Thu, 12 Jun 2014

14:00 - 16:00
L4

Introduction to Factorization

Emily Cliff & Robert Laugwitz
(University of Oxford)
Abstract

Factorization is a property of global objects that can be built up from local data. In the first half, we introduce the concept of factorization spaces, focusing on two examples relevant for the Geometric Langlands programme: the affine Grassmannian and jet spaces.

In the second half, factorization algebras will be defined including a discussion of how factorization spaces and commutative algebras give rise to examples. Finally, chiral homology is defined as a way to give global invariants of such objects.

Thu, 12 Jun 2014
14:00
L5

Cyclic Schemes for PDE-Based Image Analysis

Professor Joachim Weickert
(Universität des Saarlandes)
Abstract

Many successful methods in image processing and computer vision involve

parabolic and elliptic partial differential equations (PDEs). Thus, there

is a growing demand for simple and highly efficient numerical algorithms

that work for a broad class of problems. Moreover, these methods should

also be well-suited for low-cost parallel hardware such as GPUs.

In this talk we show that two of the simplest methods for the numerical

analysis of PDEs can lead to remarkably efficient algorithms when they

are only slightly modified: To this end, we consider cyclic variants of

the explicit finite difference scheme for approximating parabolic problems,

and of the Jacobi overrelaxation method for solving systems of linear

equations.

Although cyclic algorithms have been around in the numerical analysis

community for a long time, they have never been very popular for a number

of reasons. We argue that most of these reasons have become obsolete and

that cyclic methods ideally satisfy the needs of modern image processing

applications. Interestingly this transfer of knowledge is not a one-way

road from numerical analysis to image analysis: By considering a

factorisation of general smoothing filters, we introduce novel, signal

processing based ways of deriving cycle parameters. They lead to hitherto

unexplored methods with alternative parameter cycles. These methods offer

better smoothing properties than classical numerical concepts such as

Super Time Stepping and the cyclic Richardson algorithm.

We present a number of prototypical applications that demonstrate the

wide applicability of our cyclic algorithms. They include isotropic

and anisotropic nonlinear diffusion processes, higher dimensional

variational problems, and higher order PDEs.

Wed, 11 Jun 2014
10:30
N3.12

Hat problems and small cardinals

Robert Leek
Abstract

"Show that there is a function $f$ such that for any sequence $(x_1, x_2, \dots)$ we have $x_n = f(x_{n + 1}, x_{n + 2}, \dots)$ for all but finitely many $n$."

Fred Galvin. Problem 5348. The American Mathematical Monthly, 72(10):p. 1135, 1965.\\

This quote is one of the earliest examples of an infinite hat problem, although it's not phrased this way. A hat problem is a non-empty set of colours together with a directed graph, where the nodes correspond to "agents" or "players" and the edges determine what the players "see". The goal is to find a collective strategy for the players which ensures that no matter what "hats" (= colours) are placed on their heads, they will ensure that a "sufficient" amount guess correctly.\\

In this talk I will discuss hat problems on countable sets and show that in a non-transitive setting, the relationship between existence of infinitely-correct strategies and Ramsey properties of the graph breakdown, in the particular case of the parity game. I will then introduce some small cardinals (uncountable cardinals no larger than continuum) that will be useful in analysing the parity game. Finally, I will present some new results on the sigma-ideal of meagre sets of reals that arise from this analysis.

Tue, 10 Jun 2014

17:00 - 18:00
C5

A theorem of Tate and p-solvability

Jon Gonzalez Sanchez
(Bilbao)
Abstract

Let G be a finite group, p a prime and S a Sylow p-subgroup. The group G

is called p-nilpotent if S has a normal complement N in G, that is, G is

the semidirect product between S and N. The notion of p-nilpotency plays

an important role in finite group theory. For instance, Thompson's

criterion for p-nilpotency leads to the important structural result that

finite groups with fixed-point-free automorphisms are nilpotent.

By a classical result of Tate one can detect p-nilpotency using mod p

cohomology in dimension 1: the group G is p-nilpotent if and only if the

restriction map in cohomology from G to S is an isomorphism in dimension

1. In this talk we will discuss cohomological criteria for p-nilpotency by

Tate, and Atiyah/Quillen (using high-dimensional cohomology) from the

1960s and 1970s. Finally, we will discuss how one can extend Tate's

result to study p-solvable and more general finite groups.

Tue, 10 Jun 2014

15:45 - 16:45
L4

What is the [Categorical] Weil Representation?

Shamgar Gurevich
(University of Wisconsin - Madison)
Abstract
The Weil representation is a central object in mathematics responsible for many important results. Given a symplectic vector space V over a finite field (of odd characteristic) one can construct a "quantum" Hilbert space H(L) attached to a Lagrangian subspace L in V. In addition, one can construct a Fourier Transform F(M,L): H(L)→H(M), for every pair of Lagrangians (L,M), such that F(N,M)F(M,L)=F(N,L), for every triples (L,M,N) of Lagrangians. This can be used to obtain a natural “quantum" space H(V) acted by the symplectic group Sp(V), obtaining the Weil representation. In the lecture I will give elementary introduction to the above constructions, and discuss the categorification of these Fourier transforms, what is the related sign problem, and what is its solution. The outcome is a natural category acted by the algebraic group G=Sp, obtaining the categorical Weil representation. The sign problem was worked together with Ofer Gabber (IHES).
Tue, 10 Jun 2014

14:30 - 15:30
L6

The phase transition in bounded-size Achlioptas processes

Lutz Warnke
(University of Cambridge (DPMS))
Abstract

In the Erdös-Rényi random graph process, starting from an empty graph, in each step a new random edge is added to the evolving graph. One of its most interesting features is the `percolation phase transition': as the ratio of the number of edges to vertices increases past a certain critical density, the global structure changes radically, from only small components to a single giant component plus small ones.


In this talk we consider Achlioptas processes, which have become a key example for random graph processes with dependencies between the edges. Starting from an empty graph these proceed as follows: in each step two potential edges are chosen uniformly at random, and using some rule one of them is selected and added to the evolving graph. We discuss why, for a large class of rules, the percolation phase transition is qualitatively comparable to the classical Erdös-Rényi process.


Based on joint work with Oliver Riordan.

Tue, 10 Jun 2014

14:00 - 14:30
L5

Computing logarithms and other special functions

Mike Giles
(University of Oxford)
Abstract

Ever wondered how the log function in your code is computed? This talk, which was prepared for the 400th anniversary of Napier's development of logarithms, discusses the computation of reciprocals, exponentials and logs, and also my own work on some special functions which are important in Monte Carlo simulation.

Tue, 10 Jun 2014

12:00 - 13:00
L5

Matrix geometries

John Barrett (Nottingham)
Abstract

The talk will give a definition of matrix geometries, which are

particular types of finite real spectral triple that are useful for

approximating manifolds. Examples include fuzzy spheres and also the

internal space of the standard model. If time permits, the relation of

matrix geometries with 2d state sum models will also be sketched.

Mon, 09 Jun 2014

17:00 - 18:00
L6

Exact crystallization in a block copolymer model

Mark Peletier
(Technische Universiteit Eindhoven)
Abstract

One of the holy grails of material science is a complete characterization of ground states of material energies. Some materials have periodic ground states, others have quasi-periodic states, and yet others form amorphic, random structures. Knowing this structure is essential to determine the macroscopic material properties of the material. In theory the energy contains all the information needed to determine the structure of ground states, but in practice it is extremely hard to extract this information.

In this talk I will describe a model for which we recently managed to characterize the ground state in a very complete way. The energy describes the behaviour of diblock copolymers, polymers that consist of two parts that repel each other. At low temperature such polymers organize themselves in complex microstructures at microscopic scales.

We concentrate on a regime in which the two parts are of strongly different sizes. In this regime we can completely characterize ground states, and even show stability of the ground state to small energy perturbations.

This is work with David Bourne and Florian Theil.

Mon, 09 Jun 2014

16:00 - 17:00
C5

Intersections of progressions and spheres

Sean Eberhard
(University of Oxford)
Abstract

We state a conjecture about the size of the intersection between a bounded-rank progression and a sphere, and we prove the first interesting case, a result of Chang. Hopefully the full conjecture will be obvious to somebody present.

Mon, 09 Jun 2014

15:45 - 16:45
Oxford-Man Institute

Phase transitions in a class of infinite particle systems.

ALEX DALETSKI
(York University)
Abstract

We study infinite (random) systems of interacting particles living in a Euclidean space X and possessing internal parameter (spin) in R¹. Such systems are described by Gibbs measures on the space Γ(X,R¹) of marked configurations in X (with marks in R¹). For a class of pair interactions, we show the occurrence of phase transition, i.e. non-uniqueness of the corresponding Gibbs measure, in both 'quenched' and 'annealed' counterparts of the model.

Mon, 09 Jun 2014

14:15 - 15:15
Oxford-Man Institute

Integral representation of martingales motivated by the problem of market completion with derivative securities.

DANIEL C SCHWARZ
(University of Oxford)
Abstract

A model of a financial market is complete if any payoff can be obtained as the terminal value of a self-financing trading strategy. It is well known that numerous models, for example stochastic volatility models, are however incomplete. We present conditions, which, in a general diffusion framework, guarantee that in such cases the market of primitive assets enlarged with an appropriate number of traded derivative contracts is complete. From a purely mathematical point of view we prove an integral representation theorem which guarantees that every local Q-martingale can be represented as a stochastic integral with respect to the vector of primitive assets and derivative contracts.

Mon, 09 Jun 2014

12:00 - 13:00
L5

String Spectra and Effective Actions with Minimal Supersymmetry in the Type I Context

Igor Buchberger
(Karlstad University)
Abstract
I will discuss four-dimensional minimally supersymmetric toroidal orientifold models with D-branes and worldvolume flux. With flux but no orbifold projection, these models are well understood. They have been used extensively in various phenomenological contexts, and are T-dual to D-branes at angles. With orbifold, supersymmetry is reduced also in the closed string sector, and T-duality relations are not always straightforward. I will discuss work in progress on aspects of the one-loop string effective actions of these more general models.
Fri, 06 Jun 2014

16:30 - 17:30
L1

Linear Algebra and the Shape of Bird Beaks

Prof. Michael Brenner
(Harvard)
Abstract

Evolution by natural selection has resulted in a remarkable diversity of organism morphologies. But is it possible for developmental processes to create “any possible shape?” Or are there intrinsic constraints? I will discuss our recent exploration into the shapes of bird beaks. Initially, inspired by the discovery of genes controlling the shapes of beaks of Darwin's finches, we showed that the morphological diversity in the beaks of Darwin’s Finches is quantitatively accounted for by the mathematical group of affine transformations. We have extended this to show that the space of shapes of bird beaks is not large, and that a large phylogeny (including finches, cardinals, sparrows, etc.) are accurately spanned by only three independent parameters -- the shapes of these bird beaks are all pieces of conic sections. After summarizing the evidence for these conclusions, I will delve into our efforts to create mathematical models that connect these patterns to the developmental mechanism leading to a beak. It turns out that there are simple (but precise) constraints on any mathematical model that leads to the observed phenomenology, leading to explicit predictions for the time dynamics of beak development in song birds. Experiments testing these predictions for the development of zebra finch beaks will be presented.

Based on the following papers:

http://www.pnas.org/content/107/8/3356.short

http://www.nature.com/ncomms/2014/140416/ncomms4700/full/ncomms4700.html

Fri, 06 Jun 2014

14:15 - 15:15
C6

Ice-stream dynamics: the coupled flow of ice sheets and subglacial water.

Teresa Kyrke-Smith
(Oxford)
Abstract

Ice sheets are among the key controls on global climate and sea-level change. A detailed understanding of ice sheet dynamics is crucial so to make accurate predictions of their mass balance into the future. Ice streams are the dominant negative component in this balance, accounting for up to 90$\%$ of the Antarctic ice flux into ice shelves and ultimately into the sea. Despite their importance, our understanding of ice-stream dynamics is far from complete.

A range of observations associate ice streams with meltwater. Meltwater lubricates the ice at its bed, allowing it to slide with less internal deformation. It is believed that ice streams may appear due to a localization feedback between ice flow, basal melting and water pressure in the underlying sediments. I will present a model of subglacial water flow below ice sheets, and particularly below ice streams. This hydrologic model is coupled to a model for ice flow. I show that under some conditions this coupled system gives rise to ice streams by instability of the internal dynamics.