Fri, 31 May 2013
14:00
L2

Geometric Unity

Eric Weinstein
(Oxford)
Abstract

A program for Geometric Unity is presented to argue that the seemingly baroque features of the standard model of particle physics are in fact inexorable and geometrically natural when generalizations of the Yang-Mills and Dirac theories are unified with one of general relativity.

Fri, 31 May 2013

10:00 - 11:15
DH 1st floor SR

Understanding Composite Hydrophones' Sensitivity at Low Frequency

Mike Clifton
(Thales UK (Underwater Systems))
Abstract

In order to reduce cost, the MOD are attempting to reduce the number of array types fitted to their assets. There is also a requirement for the arrays to increase their frequency coverage. A wide bandwidth capability is thus needed from a single array. The need for high sensitivity and comparatively high frequencies of operation has led to the view that 1 3 composites are suitable hydrophones for this purpose. These hydrophones are used widely in ultra-sonics, but are not generally used down to the frequency of the new arrays.

Experimental work using a single hydrophone (small in terms of wavelengths) has shown that the sensitivity drops significantly as the frequency approaches the bottom of the required band, and then recovers as the frequency reduces further. Complex computer modelling appears to suggest the loss in sensitivity is due to a "lateral mode" where the hydrophone "breathes" in and out. In order to engineer a solution, the mechanics of the cause of this problem and the associated parameters of the materials need to be identified (e.g. is changing the 1 3 filler material the best option?). In order to achieve this understanding, a mathematical model of the 1 3 composite hydrophone (ceramic pegs and filler) is required that can be used to explain why the hydrophone changes from the simple compression and expansion in the direction of travel of the wave front to a lateral "breathing" mode.

More details available from @email

Fri, 31 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 4 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Thu, 30 May 2013

17:00 - 18:00
L3

Definable henselian valuations

Jochen Koenigsmann
(Oxford)
Abstract

Non-trivial henselian valuations are often so closely related to the arithmetic of the underlying field that they are encoded in it, i.e., that their valuation ring is first-order definable in the language of rings. In this talk, we will give a complete classification of all henselian valued fields of residue characteristic 0 that allow a (0-)definable henselian valuation. This requires new tools from the model theory of ordered abelian groups (joint work with Franziska Jahnke).

Thu, 30 May 2013

16:00 - 17:00
DH 1st floor SR

Matchmaker, matchmaker, make me a match: migration of population via marriages in the past

SangHoon Lee
(OCIAM)
Abstract

The study of human mobility patterns can provide important information for city planning or predicting epidemic spreading, has recently been achieved with various methods available nowadays such as tracking banknotes, airline transportation, official migration data from governments, etc. However, the dearth of data makes it much more difficult to study human mobility patterns from the past. In the present study, we show that Korean family books (called "jokbo") can be used to estimate migration patterns for the past 500 years. We

apply two generative models of human mobility, which are conventional gravity-like models and radiation models, to quantify how relevant the geographical information is to human marriage records in the data. Based on the different migration distances of family names, we show the almost dichotomous distinction between "ergodic" (spread in the almost entire country) and (localized) "non-ergodic" family names, which is a characteristic of Korean family names in contrast to Czech family names. Moreover, the majority of family names are ergodic throughout the long history of Korea, suggesting that they are stable not only in terms of relative fractions but also geographically.

Thu, 30 May 2013

16:00 - 17:00
L3

On translation invariant quadratic forms

Eugen Keil
(Bristol)
Abstract

Solutions to translation invariant linear forms in dense sets  (for example: k-term arithmetic progressions), have been studied extensively in additive combinatorics and number theory. Finding solutions to translation invariant quadratic forms is a natural generalization and at the same time a simple instance of the hard general problem of solving diophantine equations in unstructured sets. In this talk I will explain how to modify the  classical circle method approach to obtain quantitative results  for quadratic forms with at least 17 variables.

Thu, 30 May 2013

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

The FEAST eigenvalue algorithm and solver with new perspectives for first-principle electronic structure calculations

Professor Eric Polizzi
(University of Massachusetts)
Abstract

FEAST is a new general purpose eigenvalue algorithm that takes its inspiration from the density-matrix representation and contour integration technique in quantum mechanics [Phys. Rev. B 79, 115112, (2009)], and it can be understood as a subspace iteration algorithm using approximate spectral projection [http://arxiv.org/abs/1302.0432 (2013)]. The algorithm combines simplicity and efficiency and offers many important capabilities for achieving high performance, robustness, accuracy, and multi-level parallelism on modern computing platforms. FEAST is also the name of a comprehensive numerical library package which currently (v2.1) focuses on solving the symmetric eigenvalue problems on both shared-memory architectures (i.e. FEAST-SMP version -- also integrated into Intel MKL since Feb 2013) and distributed architectures (i.e. FEAST-MPI version) including three levels of parallelism MPI-MPI-OpenMP.

\\

\\

In this presentation, we aim at expanding the current capabilies of the FEAST eigenvalue algorithm and developing an unified numerical approach for solving linear, non-linear, symmetric and non-symmetric eigenvalue problems. The resulting algorithms retain many of the properties of the symmetric FEAST including the multi-level parallelism. It will also be outlined that the development strategy roadmap for FEAST is closely tied together with the needs to address the variety of eigenvalue problems arising in computational nanosciences. Consequently, FEAST will also be presented beyond the "black-box" solver as a fundamental modeling framework for electronic structure calculations.

\\

\\

Three problems will be presented and discussed: (i) a highly efficient and robust FEAST-based alternative to traditional self-consistent field

(SCF) procedure for solving the non-linear eigenvector problem (J. Chem. Phys. 138, p194101 (2013)]); (ii) a fundamental and practical solution of the exact muffin-tin problem for performing both accurate and scalable all-electron electronic structure calculations using FEAST on parallel architectures [Comp. Phys. Comm. 183, p2370 (2012)]; (iii) a FEAST-spectral-based time-domain propagation techniques for performing real-time TDDFT simulations. In order to illustrate the efficiency of the FEAST framework, numerical examples are provided for various molecules and carbon-based materials using our in-house all-electron real-space FEM implementation and both the DFT/Kohn-Sham/LDA and TDDFT/ALDA approaches.

Thu, 30 May 2013

13:00 - 14:00
DH 1st floor SR

CANCELLED

Peng Hu
Abstract

The aim of this lecture is to give a general introduction to

the interacting particle system and applications in finance, especially

in the pricing of American options. We survey the main techniques and

results on Snell envelope, and provide a general framework to analyse

these numerical methods. New algorithms are introduced and analysed

theoretically and numerically.

Thu, 30 May 2013
12:00
Gibson 1st Floor SR

A coupled parabolic-elliptic system arising in the theory of magnetic relaxation

James Robinson
(University of Warwick)
Abstract
    In 1985 Moffatt suggested that stationary flows of the 3D Euler equations with non-trivial topology could be obtained as the time-asymptotic limits of certain solutions of the equations of magnetohydrodynamics. Heuristic arguments also suggest that the same is true of the system
    \[ -\Delta u+\nabla p=(B\cdot\nabla)B\qquad\nabla\cdot u=0\qquad \]
    \[ B_t-\eta\Delta B+(u\cdot\nabla)B=(B\cdot\nabla)u \] when $\eta=0$.

    In this talk I will discuss well posedness of this coupled elliptic-parabolic equation in the two-dimensional case when $B(0)\in L^2$ and $\eta$ is positive.
    Crucial to the analysis is a strengthened version of the 2D Ladyzhenskaya inequality: $\|f\|_{L^4}\le c\|f\|_{L^{2,\infty}}^{1/2}\|\nabla f\|_{L^2}^{1/2}$, where $L^{2,\infty}$ is the weak $L^2$ space. I will also discuss the problems that arise in the case $\eta=0$.


    This is joint work with David McCormick and Jose Rodrigo.
Thu, 30 May 2013

12:00 - 13:00
SR1

Basic introduction to few aspects of Derived Algebraic Geometry

Vittoria Bussi
Abstract

This talk is not a detailed and precise exposition on DAG, but it is conceived more as a kind of advertisement on this theory and some of its interesting new features one should contemplate and try to understand, as they might reveal interesting new insights also on classical objects. We select some of the several motivations for introducing it (non-representability of moduli problem and non-naturality of the obstruction theory), and then we will go through the homotopy theory of simplicial commutative algebras and their cotangent complex. We will introduce the category of derived schemes and we will describe their relation with classical schemes. A good amount of time will be dedicated to examples.

Wed, 29 May 2013

16:00 - 17:00
SR1

Group von Neumann algebras of locally compact HNN-extensions

Sven Raum
(KU Leuven)
Abstract

This talk consists of three parts. As a motivation, we are first going to introduce von Neumann algebras associated with discrete groups and briefly describe their interplay with measurable group theory. Next, we are going to consider group von Neumann algebras of general locally compact groups and highlight crucial differences between the discrete and the non-discrete case. Finally, we present some recent results on group von Neumann algebras associated with certain locally compact HNN-extensions.

Wed, 29 May 2013
11:30
Queen's College

Ghosts of Departed Quantities

Levon Haykazyan
Abstract

Concepts such as infinitesimal numbers and fluxions have been used by Leibnitz and Newton for the initial development of calculus. However, their non-rigorous nature has caused a lot of controversy and they have eventually been phased out by epsilon-delta definitions. In early 60s Abraham Robinson realised that methods of mathematical logic can be used to provide rigorous meaning to such concepts. This talk is a gentle introduction to some of Robinson's ideas.

Tue, 28 May 2013
17:00
L2

Commensurating actions and irreducible lattices

Yves Cornulier
(Orsay)
Abstract

We will first recall the known notion of commensurating actions

and its link to actions on CAT(0) cube complexes. We define a

group to have Property FW if every isometric action on a CAT(0)

cube complex has a fixed point. We conjecture that every

irreducible lattice in a semisimple Lie group of higher rank has

Property FW, and will give some instances beyond the trivial

case of Kazhdan groups.

Tue, 28 May 2013

16:30 - 17:30
SR2

The critical window for the Ramsey-Turan problem

Po-Shen Loh
(CMU)
Abstract

The first application of Szemeredi's regularity method was the following celebrated Ramsey-Turan result proved by Szemeredi in 1972: any K_4-free graph on N vertices with independence number o(N) has at most (1/8 + o(1))N^2 edges. Four years later, Bollobas and Erdos gave a surprising geometric construction, utilizing the isodiametric inequality for the high dimensional sphere, of a K_4-free graph on N vertices with independence number o(N) and (1/8 - o(1)) N^2 edges. Starting with Bollobas and Erdos in 1976, several problems have been asked on estimating the minimum possible independence number in the critical window, when the number of edges is about N^2 / 8.

These problems have received considerable attention and remained one of the main open problems in this area.  More generally, it remains an important problem to determine if, for certain applications of the regularity method, alternative proofs exist which avoid using the regularity lemma and give better quantitative estimates.  In this work, we develop new regularity-free methods which give nearly best-possible bounds, solving the various open problems concerning this critical window.

Joint work with Jacob Fox and Yufei Zhao.

Tue, 28 May 2013

15:45 - 16:45
L3

Hamiltonian reduction and t-structures in (quantum) symplectic geometry

Tom Nevins
(Illinois)
Abstract

Many interesting examples of singular symplectic algebraic varieties and their symplectic resolutions are built by Hamiltonian reduction. There is a corresponding construction of "quantum Hamiltonian reduction" which is of substantial interest to representation theorists. It starts from a twisted-equivariant D-module, an analogue of an algebraic vector bundle (or coherent sheaf) on a moment map fiber, and produces an object on the quantum analogue of the symplectic resolution. In order to understand how far apart the quantisation of the singular symplectic variety and its symplectic resolution can be, one wants to know "what gets killed by quantum Hamiltonian reduction?" I will give a precise answer to this question in terms of effective combinatorics. The answer has consequences for exactness of direct images, and thus for t-structures, which I will also explain. The beautiful geometry behind the combinatorics is that of a stratification of a GIT-unstable locus called the "Kirwan-Ness stratification." The lecture will not assume familiarity with D-modules, nor with any previous talks by the speaker or McGerty in this series. The new results are joint work with McGerty.

Tue, 28 May 2013

15:45 - 16:45
L3

Hamiltonian reduction and t-structures in (quantum) symplectic geometry

Tom Nevins
(Illinois)
Abstract

Many interesting examples of singular symplectic algebraic varieties and their symplectic resolutions are built by Hamiltonian reduction. There is a corresponding construction of "quantum Hamiltonian reduction" which is of substantial interest to representation theorists. It starts from a twisted-equivariant D-module, an analogue of an algebraic vector bundle (or coherent sheaf) on a moment map fiber, and produces an object on the quantum analogue of the symplectic resolution. In order to understand how far apart the quantisation of the singular symplectic variety and its symplectic resolution can be, one wants to know "what gets killed by quantum Hamiltonian reduction?" I will give a precise answer to this question in terms of effective combinatorics. The answer has consequences for exactness of direct images, and thus for t-structures, which I will also explain. The beautiful geometry behind the combinatorics is that of a stratification of a GIT-unstable locus called the "Kirwan-Ness stratification." The lecture will not assume familiarity with D-modules, nor with any previous talks by the speaker or McGerty in this series. The new results are joint work with McGerty.

Tue, 28 May 2013

14:30 - 15:30
L3

The scaling limit of the minimum spanning tree of the complete graph

Christina Goldschmidt
(University of Oxford)
Abstract

Consider the complete graph on n vertices with independent and identically distributed edge-weights having some absolutely continuous distribution. The minimum spanning tree (MST) is simply the spanning subtree of smallest weight. It is straightforward to construct the MST using one of several natural algorithms. Kruskal's algorithm builds the tree edge by edge starting from the globally lowest-weight edge and then adding other edges one by one in increasing order of weight, as long as they do not create any cycles. At each step of this process, the algorithm has generated a forest, which becomes connected on the final step. In this talk, I will explain how it is possible to exploit a connection between the forest generated by Kruskal's algorithm and the Erd\"os-R\'enyi random graph in order to prove that $M_n$, the MST of the complete graph, possesses a scaling limit as $n$ tends to infinity. In particular, if we think of $M_n$ as a metric space (using the graph distance), rescale edge-lengths by $n^{-1/3}$, and endow the vertices with the uniform measure, then $M_n$ converges in distribution in the sense of the Gromov-Hausdorff-Prokhorov distance to a certain random measured real tree.

This is joint work with Louigi Addario-Berry (McGill), Nicolas Broutin (INRIA Paris-Rocquencourt) and Grégory Miermont (ENS Lyon).

Tue, 28 May 2013

13:00 - 14:00
DH 1st floor SR

Community detection in spatially embedded epidemic networks

Marta Sarzynska
Abstract

We detect communities on time-dependent correlation networks to study the geographical spread of disease. Using data on country-wide dengue fever, rubella, and H1N1 influenza occurrences spanning several years, we create multilayer similarity networks, with the provinces of a country as nodes and the correlations between the time series of case numbers giving weights to the edges.

We perform community detection on these temporal networks of disease outbreaks, looking for groups of provinces in which disease patterns change in similar ways. Optimizing multilayer modularity with a Newman-Girvan null model over a wide parameter range, we observe several partitions that corresponding roughly to relevant historical time points, such as large epidemics and introduction of new disease strains, as well as many strongly spatial partitions.

We develop a novel null model for community detection that takes into account spatial information, thereby allows to uncover additional structure that might otherwise be obscured by spatial proximity. The null model is based on a radiation model that was proposed recently for modelling human mobility, and we believe that it might be better at capturing disease spread than existing spatial null models based on gravity models for interaction between nodes.

The radiation null model performs better than the Newman-Girvan null model and similarly to the gravity model on benchmark spatial networks with distance-dependent links and a known community structure (both static and multislice networks), and it strongly outperforms both on flux-based benchmarks. When applied to the disease networks, the radiation null model uncovers novel, clear temporal partitions, that might shed light on disease patterns, the introduction of new strains, and provide epidemic warning signals.