Thu, 02 Dec 2010

16:00 - 17:00
Gibson Grd floor SR

Multiscale stochastic modelling of biochemical reactions

Simon Cotter
(Oxford)
Abstract

When modeling biochemical reactions within cells, it is vitally important to take into account the effect of intrinsic noise in the system, due to the small copy numbers of some of the chemical species. Deterministic systems can give vastly different types of behaviour for the same parameter sets of reaction rates as their stochastic analogues, giving us an incorrect view of the bifurcation diagram.

Stochastic Simulation Algorithms (SSAs) exist which draw exact trajectories from the Chemical Master Equation (CME). However, these methods can be very computationally expensive, particularly where there is a separation of time scales of the evolution of some of the chemical species. Some of the species may react many times on a time scale for which others are highly unlikely to react at all. Simulating all of these reactions of the fast species is a waste of computational effort, and many different methods exist for reducing the system to one which only contains the slow variables.

In this talk we will introduce the conditional Gillespie algorithm, a method for sampling directly from the conditional distribution on the fast variables, given a static value for the slow variables. Using this, we will go on to describe the constrained Gillespie approach, which uses simulations of the CG algorithm to estimate the drift and diffusion terms of the effective dynamics of the slow variables.

If there is time at the end, I will briefly describe my work on another project, which involves full sampling of the posterior distributions in various problems in data assimilation using Monte Carlo Markov Chain (MCMC) methods.

Thu, 02 Dec 2010

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

A high performance dual revised simplex solver

Dr Julian Hall
(University of Edinburgh)
Abstract

Implementations of the revised simplex method for solving large scale sparse linear programming (LP) problems are highly efficient for single-core architectures. This talk will discuss the limitations of the underlying techniques in the context of modern multi-core architectures, in particular with respect to memory access. Novel techniques for implementing the dual revised simplex method will be introduced, and their use in developing a dual revised simplex solver for multi-core architectures will be described.

Thu, 02 Dec 2010

13:00 - 14:00
SR1

A Lie-theoretic approach to prolongations of differential systems

Arman Taghavi-Chabert
(University of Oxford)
Abstract

I will sketch a method to prolong certain classes of differential equations on manifolds using Lie algebra cohomology. The talk will be based on articles by Branson, Cap, Eastwood and Gover (arXiv:math/0402100 and ESI preprint 1483).

Thu, 02 Dec 2010
13:00
L3

A Functional Approach to FBSDEs and Its Application in Optimal Portfolios

Gechun Liang
Abstract

In [Liang, Lyons and Qian(2009): Backward Stochastic Dynamics on a Filtered Probability Space, to appear in the Annals of Probability], the authors demonstrated that BSDEs can be reformulated as functional differential equations, and as an application, they solved BSDEs on general filtered probability spaces. In this paper the authors continue the study of functional differential equations and demonstrate how such approach can be used to solve FBSDEs. By this approach the equations can be solved in one direction altogether rather than in a forward and backward way. The solutions of FBSDEs are then employed to construct the weak solutions to a class of BSDE systems (not necessarily scalar) with quadratic growth, by a nonlinear version of Girsanov's transformation. As the solving procedure is constructive, the authors not only obtain the existence and uniqueness theorem, but also really work out the solutions to such class of BSDE systems with quadratic growth. Finally an optimal portfolio problem in incomplete markets is solved based on the functional differential equation approach and the nonlinear Girsanov's transformation.

The talk is based on the joint work with Lyons and Qian:

http://arxiv4.library.cornell.edu/abs/1011.4499

Wed, 01 Dec 2010

11:30 - 12:30
ChCh, Tom Gate, Room 2

Reformulating the Weight Conjecture

Jason Semeraro
(University of Oxford)
Abstract

Given a block, b, of a finite group, Alperin's weight conjecture predicts a miraculous equality between the number of isomorphism classes of simple b-modules and the number of G-orbits of b-weights. Radha Kessar showed that the latter can be written in terms of the fusion system of the block and Markus Linckelmann has computed it as an Euler characteristic of a certain space (provided certain conditions hold). We discuss these reformulations and give some examples.

Tue, 30 Nov 2010

17:00 - 18:00
L2

Geometry and dynamics of some word maps on SL(2, Fq)

Tatiana Bandman
(Bar-Ilan)
Abstract

I will speak about a geometric method, based on the classical trace map, for investigating word maps on groups PSL(2, q) and SL(2, q). In two different papers (with F. Grunewald, B. Kunyavskii, and Sh. Garion, F. Grunewald, respectively) this approach was applied to the following problems.

1. Description of Engel-like sequences of words in two variables which characterize finite

solvable groups. The original problem was reformulated in the language of verbal dynamical

systems on SL(2). This allowed us to explain the mechanism of the proofs for known

sequences and to obtain a method for producing more sequences of the same nature.

2. Investigation of the surjectivity of the word map defined by the n-th Engel word

[[[X, Y ], Y ], . . . , Y ] on the groups PSL(2, q) and SL(2, q). Proven was that for SL(2, q), this

map is surjective onto the subset SL(2, q) $\setminus$ {−id} $\subset$ SL(2, q) provided that q $\ge q_0(n)$ is

sufficiently large. If $n\le 4$ then the map was proven to be surjective for all PSL(2, q).

Tue, 30 Nov 2010

15:45 - 16:45
L3

Cobordisms of sutured manifolds

Andras Juhasz
(Cambridge)
Abstract

Sutured manifolds are compact oriented 3-manifolds with boundary, together with a set of dividing curves on the boundary. Sutured Floer homology is an invariant of balanced sutured manifolds that is a common generalization of the hat version of Heegaard Floer homology and knot Floer homology. I will define cobordisms between sutured manifolds, and show that they induce maps on sutured Floer homology groups, providing a type of TQFT. As a consequence, one gets maps on knot Floer homology groups induced by decorated knot cobordisms.

Tue, 30 Nov 2010

13:15 - 13:45
Gibson Grd floor SR

Modelling of the CSF Infusion Test

Almut Eisentrager
(Numerical Analysis Group)
Abstract

In a healthy human brain, cerebrospinal fluid (CSF), a water-like liquid, fills a system of cavities, known as ventricles, inside the brain and also surrounds the brain and spinal cord. Abnormalities in CSF dynamics, such as hydrocephalus, are not uncommon and can be fatal for the patient. We will consider two types of models for the so-called infusion test, during which additional fluid is injected into the CSF space at a constant rate, while measuring the pressure continuously, to get an insight into the CSF dynamics of that patient.

 

In compartment type models, all fluids are lumped into compartments, whose pressure and volume interactions can be modelled with compliances and resistances, equivalent to electric circuits. Since these models have no spatial variation, thus cannot give information such as stresses in the brain tissue, we also consider a model based on the theory of poroelasticity, but including strain-dependent permeability and arterial blood as a second fluid interacting with the CSF only through the porous elastic solid.

Mon, 29 Nov 2010

17:00 - 18:00
Gibson 1st Floor SR

Navier-Stokes-Fokker-Planck systems in kinetic models of dilute polymers: existence and equilibration of global weak solutions

Endre Suli
(University of Oxford)
Abstract

We show the existence of global-in-time weak solutions to a general class of bead-spring chain models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier-Stokes equations in a bounded domain in two or three space dimensions for the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined by the Kramers expression through the associated probability density function that satisfies a Fokker-Planck-type parabolic equation, a crucial feature of which is the presence of a center-of-mass diffusion term. We require no structural assumptions on the drag term in the Fokker-Planck equation; in particular, the drag term need not be corotational. With a square-integrable and divergence-free initial velocity datum for the Navier-Stokes equation and a nonnegative initial probability density function for the Fokker-Planck equation, which has finite relative entropy with respect to the Maxwellian of the model, we prove the existence of a global-in-time weak solution to the coupled Navier-Stokes-Fokker-Planck system. It is also shown that in the absence of a body force, the weak solution decays exponentially in time to the equilibrium solution, at a rate that is independent of the choice of the initial datum and of the centre-of-mass diffusion coefficient.

The talk is based on joint work with John W. Barrett [Imperial College London].

Mon, 29 Nov 2010

16:00 - 17:00
SR1

TBA

Johan Bredberg
(Oxford)
Mon, 29 Nov 2010
15:45
Eagle House

tba

Rama Cont
Mon, 29 Nov 2010

12:00 - 13:00
L3

Generalized Geometry in AdS/CFT and Volume Minimization

Maxime Gabella
(Oxford)
Abstract
Motivated by the study of general supersymmetric AdS_5 solutions of type IIB supergravity with fluxes, I will define a notion of "generalized Sasaki-Einstein geometry," characterized by a differential system for a triple of symplectic forms in 4d. I will then show that the minimization of the contact volume over a space of generalized Sasakian structures determines the Reeb vector field for such a solution. This is the geometric counterpart of a-maximization in superconformal field theory. This variational procedure will be put to good use by computing BPS quantities for a predicted infinite family of solutions dual to mass-deformed generalized conifolds.
Fri, 26 Nov 2010
14:15
DH 1st floor SR

CANCELLED

CANCELLED
Fri, 26 Nov 2010

12:30 - 13:30
Gibson 1st Floor SR

Optimal conditions for Tonelli´s partial regularity

Richard Gratwick
(University of Warwick)
Abstract

Tonelli gave the first rigorous treatment of one-dimensional variational problems, providing conditions for existence and regularity of minimizers over the space of absolutely continuous functions.  He also proved a partial regularity theorem, asserting that a minimizer is everywhere differentiable, possible with infinite derivative, and that this derivative is continuous as a map into the extended real line.  Some recent work has lowered the smoothness assumptions on the Lagrangian for this result to various Lispschitz and H\"older conditions.  In this talk we will discuss the partial regularity result, construct examples showing that mere continuity of the Lagrangian is an insufficient condition.

Fri, 26 Nov 2010

11:00 - 12:00
SR2

Lectures on global Springer theory III

Zhiwei Yun
(MIT)
Abstract

Study the parabolic Hitchin fibrations for Langlands dual groups. Sketch the proof of a duality theorem of the natural symmetries on their cohomology.

Fri, 26 Nov 2010

10:00 - 13:00
DH 1st floor SR

Three problems

Dr Samuel Somasundaram and Dr Robert Harter
(Thales UK (Underwater Systems))
Abstract

There will be three problems discussed all of which are open for consideration as MSc projects.

1. Reduction of Ndof in Adaptive Signal Processing

2. Calculus of Convex Sets

3. Dynamic Response of a disc with an off centre hole(s)