Fri, 19 Nov 2010
14:30
DH 3rd floor SR

'Exploding Rock

Mark McGuinness
(Victoria University of Wellington)
Fri, 19 Nov 2010
14:15
DH 1st floor SR

On the convergence of approximation schemes for equations arising in Finance

Guy Barles
(Universite Francois Rablelais)
Abstract

Abstract: describe several results on the convergence of approximation schemes for possibly degenerate, linear or nonlinear parabolic equations which apply in particular to equations arising in option pricing or portfolio management. We address both the questions of the convergence and the rate of convergence.

Fri, 19 Nov 2010

10:00 - 13:00
DH 1st floor SR

Industrial MSc project proposals

Various
Abstract

This is the session for industrial sponsors of the MSc in MM and SC to present the project ideas for 2010-11 academic year. Potential supervisors should attend to clarify details of the projects and meet the industrialists.

The schedule is 10am: Introduction; 10:05am David Sayers for NAG; 10:35am Andy Stove for Thales.
Thu, 18 Nov 2010

16:00 - 17:00
L3

On Nahm's conjecture

Dr S Zwegers
(University College, Dublin)
Abstract

We consider certain q-series depending on parameters (A,B,C), where A is

a positive definite r times r matrix, B is a r-vector and C is a scalar,

and ask when these q-series are modular forms. Werner Nahm (DIAS) has

formulated a partial answer to this question: he conjectured a criterion

for which A's can occur, in terms of torsion in the Bloch group. For the

case r=1, the conjecture has been show to hold by Don Zagier (MPIM and

CdF). For r=2, Masha Vlasenko (MPIM) has recently found a

counterexample. In this talk we'll discuss various aspects of Nahm's conjecture.

Thu, 18 Nov 2010

16:00 - 17:30
DH 1st floor SR

On some kinetic equations of swarming

José Antonio Carrillo de la Plata
(Universitat Autònoma de Barcelona)
Abstract

A kinetic theory for swarming systems of interacting individuals will be described with and without noise. Starting from the the particle model \cite{DCBC}, one can construct solutions to a kinetic equation for the single particle probability distribution function using distances between measures \cite{dobru}. Analogously, we will discuss the mean-field limit for these problems with noise.

We will also present and analys the asymptotic behavior of solutions of the continuous kinetic version of flocking by Cucker and Smale The large-time behavior of the distribution in phase space is subsequently studied by means of particle approximations and a stability property in distances between measures. It will be shown that the solutions concentrate exponentially fast their velocity to their mean while in space they will converge towards a translational flocking solution.

Thu, 18 Nov 2010

14:00 - 15:00
Gibson Grd floor SR

Optimization with time-periodic PDE constraints: Numerical methods and applications

Mr. Andreas Potschka
(University of Heidelberg)
Abstract

Optimization problems with time-periodic parabolic PDE constraints can arise in important chemical engineering applications, e.g., in periodic adsorption processes. I will present a novel direct numerical method for this problem class. The main numerical challenges are the high nonlinearity and high dimensionality of the discretized problem. The method is based on Direct Multiple Shooting and inexact Sequential Quadratic Programming with globalization of convergence based on natural level functions. I will highlight the use of a generalized Richardson iteration with a novel two-grid Newton-Picard preconditioner for the solution of the quadratic subproblems. At the end of the talk I will explain the principle of Simulated Moving Bed processes and conclude with numerical results for optimization of such a process.

Thu, 18 Nov 2010

13:00 - 14:00
SR1

Algebraic approximations to special Kahler metrics

Stuart J Hall
((Imperial College, London))
Abstract

I will begin by defining the space of algebraic metrics in a particular Kahler class and recalling the Tian-Ruan-Zelditch result saying that they are dense in the space of all Kahler metrics in this class.  I will then discuss the relationship between some special algebraic metrics called 'balanced metrics' and distinguished Kahler metrics (Extremal metrics, cscK, Kahler-Ricci solitons...). Finally I will talk about some numerical algorithms due to Simon Donaldson for finding explicit examples of these balanced metrics (possibly with some pictures).

Wed, 17 Nov 2010

11:30 - 12:30
ChCh, Tom Gate, Room 2

Thompson's Groups

Elisabeth Fink
(University of Oxford)
Abstract

I am going to introduce Thompson's groups F, T and V. They can be seen in two ways: as functions on [0,1] or as isomorphisms acting on trees.

Wed, 17 Nov 2010

10:15 - 11:15
OCCAM Common Room (RI2.28)

The case for differential geometry in continuum mechanics

Marcelo Epstein
(University of Calgary)
Abstract

Modern differential geometry is the art of the abstract that can be pictured. Continuum mechanics is the abstract description of concrete material phenomena. Their encounter, therefore, is as inevitable and as beautiful as the proverbial chance meeting of an umbrella and a sewing machine on a dissecting table. In this rather non-technical and lighthearted talk, some of the surprising connections between the two disciplines will be explored with a view at stimulating the interest of applied mathematicians.

Tue, 16 Nov 2010

15:45 - 16:45
L3

(HoRSe seminar) On the calculus underlying Donaldson-Thomas theory II

Kai Behrend
(Vancouver)
Abstract

On a manifold there is the graded algebra of polyvector fields with its Lie-Schouten bracket, and the module of de Rham differentials with exterior differentiation. This package is called a "calculus". The moduli

space of sheaves (or derived category objects) on a Calabi-Yau threefold has a kind of "virtual calculus" on it, at least conjecturally. In particular, this moduli space has virtual de Rham cohomology groups, which categorify Donaldson-Thomas invariants, at least conjecturally. We describe some attempts at constructing such a virtual calculus. This is work in progress.

Tue, 16 Nov 2010

14:30 - 15:30
L3

Triangles in tripartite graphs

John Talbot
(UCL)
Abstract

How many triangles must a graph of density d contain? This old question due to Erdos was recently answered by Razborov, after many decades of progress by numerous authors.

We will consider the analogous question for tripartite graphs. Given a tripartite graph with prescribed edges densities between each

pair of classes how many triangles must it contain?

Tue, 16 Nov 2010

14:00 - 15:00
SR1

(HoRSe seminar) On the calculus underlying Donaldson-Thomas theory I

Kai Behrend
(Vancouver)
Abstract

On a manifold there is the graded algebra of polyvector fields with its Lie-Schouten bracket, and the module of de Rham differentials with exteriour differentiation. This package is called a "calculus". The moduli space of sheaves (or derived category objects) on a Calabi-Yau threefold has a kind of "virtual calculus" on it, at least conjecturally. In particular, this moduli space has virtual de Rham cohomology groups, which categorify Donaldson-Thomas invariants, at least conjecturally. We describe some attempts at constructing such a virtual calculus. This is work in progress.

Tue, 16 Nov 2010
13:15
DH 1st floor SR

"Exponential Asymptotics and Free-Surface Fluid Flow"

Chris Lustri
(OCIAM)
Abstract

We investigate the behaviour of free-surface waves on time-varying potential flow in the limit as the Froude number becomes small. These waves are exponentially small in the Froude number, and are therefore inaccessible to ordinary asymptotic methods. As such, we demonstrate how exponential asymptotic techniques may be applied to the complexified free surface in order to extract information about the wave behaviour on the free surface, using a Lagrangian form of the potential flow equations. We consider the specific case of time-varying flow over a step, and demonstrate that the results are consistent with the steady state case.

Mon, 15 Nov 2010
17:00
Gibson 1st Floor SR

The role of small space dimensions in the regularity theory of elliptic problems

Lisa Beck
(Scuola Normale Superiore di Pisa)
Abstract

Let $u \in W^{1,p}(\Omega,\R^N)$, $\Omega$ a bounded domain in

$\R^n$, be a minimizer of a convex variational integral or a weak solution to

an elliptic system in divergence form. In the vectorial case, various

counterexamples to full regularity have been constructed in dimensions $n

\geq 3$, and it is well known that only a partial regularity result can be

expected, in the sense that the solution (or its gradient) is locally

continuous outside of a negligible set. In this talk, we shall investigate

the role of the space dimension $n$ on regularity: In arbitrary dimensions,

the best known result is partial regularity of the gradient $Du$ (and hence

for $u$) outside of a set of Lebesgue measure zero. Restricting ourselves to

the partial regularity of $u$ and to dimensions $n \leq p+2$, we explain why

the Hausdorff dimension of the singular set cannot exceed $n-p$. Finally, we

address the possible existence of singularities in two dimensions.