Spectral discrete solitons: from cnoidal waves to spatio-temporal helical beams
Abstract
In my talk I will introduce the concept of spectral discrete solitons
(SDSs): solutions of nonlinear Schroedinger type equations, which are localized on a regular grid in frequency space. In time domain such solitons correspond to periodic trains of pulses. SDSs play important role in cascaded four-wave-mixing processes (frequency comb generation) in optical fibres, where initial excitation by a two-frequency pump leads to the generation of multiple side-bands. When free space diffraction is taken into consideration, a non-trivial generalization of 1D SDSs will be discussed, in which every individual harmonic is an optical vortex with its own topological charge. Such excitations correspond to spatio-temporal helical beams.
Primal-dual active set methods for solving Non-local Allen-Cahn Systems
Abstract
We propose and analyze a primal-dual active set method for local and non-local vector-valued Allen-Cahn variational inequalities.
We show existence and uniqueness of a solution for the non-local vector-valued Allen-Cahn variational inequality in a formulation involving Lagrange multipliers for local and non-local constraints. Furthermore, convergence of the algorithm is shown by interpreting the approach as a semi-smooth Newton method and numerical simulations are presented.
Constructing manifolds with special holonomy by resolving orbifolds
Abstract
All of Joyce's constructions of compact manifolds with special holonomy are in some sense generalisations of the Kummer construction of a K3 surface. We will begin by reviewing manifolds with special holonomy and the Kummer construction. We will then describe Joyce's constructions of compact manifolds with holonomy G_2 and Spin(7).
11:00
11:00
Lectures on global Springer theory II
Abstract
Extend the affine Weyl group action in Lecture I to double affine Hecke algebra action, and (hopefully) more examples.
Gravitational instantons from rational elliptic surfaces
Abstract
Gravitational instantons are complete hyperkaehler 4-manifolds whose Riemann curvature tensor is square integrable. They can be viewed as Einstein geometry analogs of finite energy Yang-Mills instantons on Euclidean space. Classical examples include Kronheimer's ALE metrics on crepant resolutions of rational surface singularities and the ALF Riemannian Taub-NUT metric, but a classification has remained largely elusive. I will present a large, new connected family of gravitational instantons, based on removing fibers from rational elliptic surfaces, which contains ALG and ALH spaces as well as some unexpected geometries.
14:15
Lectures on global Springer theory I
Abstract
Introduce the parabolic Hitchin fibration, construct the affine Weyl group action on its fiberwise cohomology, and study one example.
17:00
Telling Great Stories: the Mathematics and Systems Engineering of Movie Production
Keller-Segel, Fast-Diffusion and Functional Inequalities
Abstract
It will be shown how the critical mass classical Keller-Segel system and
the critical displacement convex fast-diffusion equation in two
dimensions are related. On one hand, the critical fast diffusion
entropy functional helps to show global existence around equilibrium
states of the critical mass Keller-Segel system. On the other hand, the
critical fast diffusion flow allows to show functional inequalities such
as the Logarithmic HLS inequality in simple terms who is essential in the
behavior of the subcritical mass Keller-Segel system. HLS inequalities can
also be recovered in several dimensions using this procedure. It is
crucial the relation to the GNS inequalities obtained by DelPino and
Dolbeault. This talk corresponds to two works in preparation together
with E. Carlen and A. Blanchet, and with E. Carlen and M. Loss.
15:45
Some aspects of measures on path spaces
Abstract
Probability measures in infinite dimensional spaces especially that induced by stochastic processes are the main objects of the talk. We discuss the role played by measures on analysis on path spaces, Sobolev inequalities, weak formulations and local versions of such inequalities related to Brownian bridge measures.
14:15
14:15
Directed polymers and the quantum Toda lattice
Abstract
We relate the partition function associated with a certain Brownian directed polymer model to a diffusion process which is closely related to a quantum integrable system known as the quantum Toda lattice. This result is based on a `tropical' variant of a combinatorial bijection known as the Robinson-Schensted-Knuth (RSK) correspondence and is completely analogous to the relationship between the length of the longest increasing subsequence in a random permutation and the Plancherel measure on the dual of the symmetric group.