Tue, 26 Oct 2010

15:45 - 16:45
L3

Topological quantum field theory structure on symplectic cohomology

Alexander Ritter
(Cambridge)
Abstract

Symplectic cohomology is an invariant of symplectic manifolds with contact type boundary. For example, for disc cotangent bundles it recovers the

homology of the free loop space. The aim of this talk is to describe algebraic operations on symplectic cohomology and to deduce applications in

symplectic topology. Applications range from describing the topology of exact Lagrangian submanifolds, to proving existence theorems about closed

Hamiltonian orbits and Reeb chords.

Tue, 26 Oct 2010

14:30 - 15:30
L3

When not knowing can slow you down

Raphael Clifford
(Bristol)
Abstract

Combinatorial pattern matching is a subject which has given us fast and elegant algorithms for a number of practical real world problems as well as being of great theoretical interest. However, when single character wildcards or so-called "don't know" symbols are introduced into the input, classic methods break down and it becomes much more challenging to find provably fast solutions. This talk will give a brief overview of recent results in the area of pattern matching with don't knows and show how techniques from fields as disperse FFTs, group testing and algebraic coding theory have been required to make any progress. We will, if time permits, also discuss the main open problems in the area.

Mon, 25 Oct 2010

17:00 - 18:00
Gibson 1st Floor SR

On averaged equations for turbulent flows

Luigi Berselli
(Universita di Pisa)
Abstract

I will make a short review of some continous approximations to the Navier-Stokes equations, especially with the aim of introducing alpha models for the Large Eddy Simulation of turbulent flows.

Next, I will present some recent results about approximate deconvolution models, derived with ideas similar to image processing. Finally, I will show the rigorous convergence of solutions towards those of the averaged fluid equations.

Mon, 25 Oct 2010
15:45
Eagle House

Probability theory of {nα}

Istvan Berkes
(Graz University of Technology)
Abstract

The sequence {nα}, where α is an irrational number and {.} denotes fractional part, plays

a fundamental role in probability theory, analysis and number theory. For suitable α, this sequence provides an example for "most uniform" infinite sequences, i.e. sequences whose discrepancy has the

smallest possible order of magnitude. Such 'low discrepancy' sequences have important applications in Monte Carlo integration and other problems of numerical mathematics. For rapidly increasing nk the behaviour of {nkα} is similar to that of independent random variables, but its asymptotic properties depend strongly also on the number theoretic properties of nk, providing a simple example for pseudorandom behaviour. Finally, for periodic f the sequence f(nα) provides a generalization of the trig-onometric system with many interesting  properties. In this lecture, we give a survey of the field  (going back more than 100 years) and formulate new results.

 

 

 



Mon, 25 Oct 2010
14:15
Eagle House

On the stochastic nonlinear Schrödinger equation

Annie Millet
Abstract

We consider a non linear Schrödinger equation on a compact manifold of dimension d subject to some multiplicative random perturbation. Using some stochastic Strichartz inequality, we prove the existence and uniqueness of a maximal solution in H^1 under some general conditions on the diffusion coefficient. Under stronger conditions on the noise, the nonlinearity and the diffusion coefficient, we deduce the existence of a global solution when d=2. This is a joint work with Z. Brzezniak.



Mon, 25 Oct 2010

12:00 - 13:00
L3

On the gravity duals of N=2 superconformal field theories

Ron Reid-Edwards
(Oxford)
Abstract
In 2009 Gaiotto and Maldacena demonstrated that the challenge of finding gravitational descriptions of N=2 superconformal field theories could, under certain circumstances, be reduced to a simple two-dimensional electrostatics problem. In this talk I will review their work and discuss recent progress in finding and interpreting such solutions in string and M-theory.
Fri, 22 Oct 2010
16:30
L2

The sharp quantitative isoperimetric inequality and related inequalities in quantitative form.

Nicola Fusco
Abstract

The isoperimetric inequality is a fundamental tool in many geometric and analytical issues, beside being the starting point for a great variety of other important inequalities.

We shall present some recent results dealing with the quantitative version of this inequality, an old question raised by Bonnesen at the beginning of last century. Applications of the sharp quantitative isoperimetric inequality to other classic inequalities and to eigenvalue problems will be also discussed.

Fri, 22 Oct 2010
14:15
DH 1st floor SR

Optimal Static-Dynamic Hedging under Convex Risk Measures

Ronnie Sircar
(Princeton University)
Abstract

The theory and computation of convex measures of financial risk has been a very active area of Financial Mathematics, with a rich history in a short number of years. The axioms specify sensible properties that measures of risk should possess (and which the industry's favourite, value-at-risk, does not). The most common example is related to the expectation of an exponential utility function.

A basic application is hedging, that is taking off-setting positions, to optimally reduce the risk measure of a portfolio. In standard continuous-time models with dynamic hedging, this leads to nonlinear PDE problems of HJB type. We discuss so-called static-dynamic hedging of exotic options under convex risk measures, and specifically the existence and uniqueness of an optimal position. We illustrate the computational challenge when we move away from the risk measure associated with exponential utility.

Joint work with Aytac Ilhan (Goldman Sachs) and Mattias Jonsson (University of Michigan).

Thu, 21 Oct 2010
17:00
L3

'Proof of Gaifman's conjecture for relatively categorical abelian groups'

Wilfrid Hodges
Abstract

In 1974 Haim Gaifman conjectured that if a first-order theory T is relatively categorical over T(P) (the theory of the elements satisfying P), then every model of T(P) expands to one of T.

The conjecture has long been known to be true in some special cases, but nothing general is known. I prove it in the case of abelian groups with distinguished subgroups. This is some way outside the previously known cases, but the proof depends so heavily on the Kaplansky-Mackey proof of Ulm's theorem that the jury is out on its generality.

Thu, 21 Oct 2010

16:00 - 17:00
L3

Almost prime points on homogeneous varieties

Dr A Gorodnik
(Bristol)
Abstract

Given a polynomial function f defined on a variety X,

we consider two questions, which are non-commutative analogues

of the Prime Number Theorem and the Linnik Theorem:

- how often the values of f(x) at integral points in X are almost prime?

- can one effectively solve the congruence equation f(x)=b (mod q)

with f(x) being almost prime?

We discuss a solution to these questions when X is a homogeneous

variety (e.g, a quadratic surface).

Thu, 21 Oct 2010

16:00 - 17:30
DH 1st floor SR

The shape of water, metamorphosis and infinite-dimensional geometric mechanics

Darryl D Holm
((Imperial College, London))
Abstract

Whenever we say the words "fluid flows" or "shape changes" we enter the realm of infinite-dimensional geometric mechanics. Water, for example, flows. In fact, Euler's equations tell us that water flows a particular way. Namely, it flows to get out of its own way as adroitly as possible. The shape of water changes by smooth invertible maps called diffeos (short for diffeomorphisms). The flow responsible for this optimal change of shape follows the path of shortest length, the geodesic, defined by the metric of kinetic energy. Not just the flow of water, but the optimal morphing of any shape into another follows one of these optimal paths.

The lecture will be about the commonalities between fluid dynamics and shape changes and will be discussed in the language most suited to fundamental understanding -- the language of geometric mechanics. A common theme will be the use of momentum maps and geometric control for steering along the optimal paths using emergent singular solutions of the initial value problem for a nonlinear partial differential equation called EPDiff, that governs metamorphosis along the geodesic flow of the diffeos. The main application will be in the registration and comparison of Magnetic Resonance Images for clinical diagnosis and medical procedures.

Thu, 21 Oct 2010

14:00 - 15:00
Gibson Grd floor SR

Diffuse interface models for two-phase flow

Prof. Axel Voigt
(Dresden University of Technology)
Abstract

Starting from a Navier-Stokes-Cahn-Hilliard equation for a two-phase flow problem we discuss efficient numerical approaches based on adaptive finite element methods. Various extensions of the model are discussed: a) we consider the model on implicitly described geometries, which is used to simulate the sliding of droplets over nano-patterned surfaces, b) we consider the effect of soluble surfactants and show its influence on tip splitting of droplets under shear flow, and c) we consider bijels as a new class of soft matter materials, in which colloidal particles are jammed on the fluid-fluid interface and effect the motion of the interface due to an elastic force.

The work is based on joint work with Sebastian Aland (TU Dresden), John Lowengrub (UC Irvine) and Knut Erik Teigen (U Trondheim).

Thu, 21 Oct 2010

13:00 - 14:00
SR1

Models for threefolds fibred by K3 surfaces of degree two

Alan Thompson
(University of Oxford)
Abstract

A K3 surface of degree two can be seen as a double cover of the complex projective plane, ramified over a nonsingular sextic curve. In this talk we explore two different methods for constructing explicit projective models of threefolds admitting a fibration by such surfaces, and discuss their relative merits.

Wed, 20 Oct 2010
15:00
Gibson 1st Floor SR

Constructing Singular Monopoles from Cheshire Bows

Chris Blair
(Cambridge)
Abstract

Singular monopoles are solutions to the Bogomolny equation with prescribed singularities of Dirac monopole type. Previously such monopoles could be constructed only by the Nahm transform, with some difficulty. We therefore formulate a new construction of all singular monopoles. This construction relies on two ideas: Kronheimer's correspondence between singular monopoles on R^3 and self-dual connections on the multi-Taub-NUT space, and Cherkis' recent construction of self-dual connections on curved spaces using bow diagrams. As an example of our method we use it to obtain the explicit solution for a charge one SU(2) singular monopole with an arbitrary number of singularities.