Thu, 03 Dec 2009

16:30 - 17:30
OCCAM Common Room (RI2.28)

Computational Surface Partial Differential Equations

Charlie Elliott
(Warwick University)
Abstract

Evolutionary PDEs on stationary and moving surfaces appear in many applications such as the diffusion of surfactants on fluid interfaces, surface pattern formation on growing domains, segmentation on curved surfaces and phase separation on biomembranes and dissolving alloy surfaces.

In this talk I discuss three numerical approaches based on:- (I) Surface Finite Elements and Triangulated Surfaces, (II)Level Set Method and Implicit Surface PDEs and (III) Phase Field Approaches and Diffuse Surfaces.

Thu, 03 Dec 2009

14:00 - 15:00
3WS SR

Rational Approximations to the Complex Error Function

Prof. Andre Weideman
(University of Stellenbosch)
Abstract

We consider rational approximations to the Faddeeva or plasma dispersion function, defined

as

$w(z) = e^{-z^{2}} \mbox{erfc} (-iz)$.

With many important applications in physics, good software for

computing the function reliably everywhere in the complex plane is required. In this talk

we shall derive rational approximations to $w(z)$ via quadrature, M\"{o}bius transformations, and best approximation. The various approximations are compared with regard to speed of convergence, numerical stability, and ease of generation of the coefficients of the formula.

In addition, we give preference to methods for which a single expression yields uniformly

high accuracy in the entire complex plane, as well as being able to reproduce exactly the

asymptotic behaviour

$w(z) \sim i/(\sqrt{\pi} z), z \rightarrow \infty$

(in an appropriate sector).

This is Joint work with: Stephan Gessner, St\'efan van der Walt

Thu, 03 Dec 2009

12:00 - 13:00
SR1

Moduli Spaces of Sheaves on Toric Varieties

Martijn Kool
(Oxford)
Abstract

Extending work of Klyachko, we give a combinatorial description of pure equivariant sheaves on a nonsingular projective toric variety X and construct moduli spaces of such sheaves. These moduli spaces are explicit and combinatorial in nature. Subsequently, we consider the moduli space M of all Gieseker stable sheaves on X and describe its fixed point locus in terms of the moduli spaces of pure equivariant sheaves on X. Using torus localisation, one can then compute topological invariants of M. We consider the case X=S is a toric surface and compute generating functions of Euler characteristics of M. In case of torsion free sheaves, one can study wall-crossing phenomena and in case of pure dimension 1 sheaves one can verify, in examples, a conjecture of Katz relating Donaldson--Thomas invariants and Gopakumar--Vafa invariants.

Wed, 02 Dec 2009

11:30 - 12:30
ChCh, Tom Gate, Room 2

Generalized Gelfand--Graev representations for finite groups of Lie type

Matthew Clarke
(University of Cambridge)
Abstract

This talk is about the ordinary representation theory of finite groups of Lie type. I will begin by carefully reviewing algebraic groups and finite groups of Lie type and the construction and properties of (ordinary) Gelfand--Graev characters. I will then introduce generalized Gelfand--Graev characters, which are constructed using the Lie algebra of the ambient algebraic group. Towards the end I hope to give an idea of how generalized Gelfand--Graev characters can and have been used to attack Lusztig's conjecture and the role this plays in the determination of the character tables of finite groups of Lie type.

Tue, 01 Dec 2009

15:00 - 16:00
Imperial College

(HoRSe seminar at Imperial College) Moduli of Calabi-Yau 3-folds and instantons on $G_2$ manifolds

Simon Donaldson
(Imperial College London)
Abstract

This talk will be largely speculative. First we consider the formal properties that could be expected of a "topological field theory" in 6+1 dimensions defined by $G_2$ instantons. We explain that this could lead to holomorphic bundles over moduli spaces of Calabi-Yau 3-folds whose ranks are the DT-invariants. We also discuss in more detail the compactness problem for $G_2$ instantons and associative submanifolds.

The talk will be held in Room 408, Imperial College Maths Department, Huxley Building, 180 Queen’s Gate, London.

Tue, 01 Dec 2009

13:30 - 14:30
Imperial College

(HoRSe seminar at Imperial college) Gauge theory and exceptional holonomy

Simon Donaldson
(Imperial College London)
Abstract

This talk will review material, well-known to specialists, on calibrated geometry and Yang-Mills theory over manifolds with holonomy $SU(3)$, $G_2$ or $Spin(7)$. We will also describe extensions of the standard set-up, modelled on Gromov's "taming forms" for almost-complex structures.

The talk will be held in Room 408, Imperial College Maths Department, Huxley Building, 180 Queen’s Gate, London.

Tue, 01 Dec 2009
12:00
L3

On the classification of extremal black holes

James Lucietti
(Imperial)
Abstract

Extremal black holes are of interest as they are expected have simpler quantum descriptions than their non-extremal counterparts.  Any extremal black hole solution admits a well defined notion of a near horizon geometry which solves the same field equations. I will describe recent progress on the general understanding of such near horizon geometries in four and higher dimensions. This will include the proof of near-horizon symmetry enhancement and the explicit classification of near-horizon geometries (in a variety of settings). I will also discuss how one can use such results to prove classification/uniqueness theorems for asymptotically flat extremal vacuum black holes in four and five dimensions.

Mon, 30 Nov 2009
15:45
Eagle House

Hybrid Brownian motion: a model for price feedback and volatility explosion

William Shaw
(King’s College London)
Abstract

Numerous studies of asset returns reveal excess kurtosis as fat tails, often characterized by power law behaviour. A hybrid of arithmetic and geometric Brownian motion is proposed as a model for short-term asset returns, and its equilibrium and dynamical properties explored. Some exact solutions for the time-dependent behaviour are given, and we demonstrate the existence of a stochastic bifurcation between mean- reverting and momentum-dominated markets. The consequences for risk management will be discussed.

Mon, 30 Nov 2009
14:15
Eagle House

TBA

Bohdan Maslowski
(Academy of Sciences of Czech Republic)
Mon, 30 Nov 2009

12:00 - 13:00
L3

Computational Challenges in Calabi-Yau and String Phenomenology

Maximillian Kreuzer
(Technische Universitaet Wien)
Abstract
I discuss some theorems and algorithms that we use for enumerating reflexive polytopes and related objects, as well as problems and examples that are of interest in both algebraic geometry and string phenomenology. I would also like to exchange ideas about possible synergies between the numerous current computational activities in the field.
Mon, 30 Nov 2009

10:30 - 11:30
Gibson 1st Floor SR

L1-contraction in viscous scalar conser vation laws: Unconditional stability

Denis Serre
(École Normale Supérieure de Lyon)
Abstract

Several dissipative scalar conservation laws share the properties of

$L1$-contraction and maximum principle. Stability issues are naturally

posed in terms of the $L1$-distance. It turns out that constants and

travelling waves are asymptotically stable under zero-mass initial

disturbances. For this to happen, we do not need any assumption

(smallness of the TW, regularity/smallness of the disturbance, tail

asymptotics, non characteristicity, ...) The counterpart is the lack of

a decay rate.

Mon, 30 Nov 2009
00:00
Martin Wood Lecture

Mathematics, Economics and Decision Making

Prof. Lord Desai
Abstract

Lord Desai will discuss how the use of mathematics in economics is as much a result of formalism as of limited knowledge of mathematics. This will relate to his experience as a teacher and researcher and also speak to the current financial meltdown.

Fri, 27 Nov 2009
16:30
L2

Finite generation of the canonical ring after Lazic

Professor Alessio Corti
(London)
Abstract

A key birational invariant of a compact complex manifold is its "canonical ring."

The ring of modular forms in one or more variables is an example of a canonical ring. Recent developments in higher dimensional algebraic geometry imply that the canonical ring is always finitely generated:this is a long-awaited major foundational result in algebraic geometry.

In this talk I define all the terms and discuss the result, some applications, and a recent remarkable direct proof by Lazic.

Fri, 27 Nov 2009
14:15
DH 1st floor SR

Pricing without equivalent martingale measures under complete and incomplete observation

Wolfgang Runggaldier
(Padova)
Abstract

Traditional arbitrage pricing theory is based on martingale measures. Recent studies show that some form of arbitrage may exist in real markets implying that then there does not exist an equivalent martingale measure and so the question arises: what can one do with pricing and hedging in this situation? We mention here two approaches to this effect that have appeared in the literature, namely the ``Fernholz-Karatzas" approach and Platen's "Benchmark approach" and discuss their relationships both in models where all relevant quantities are fully observable as well as in models where this is not the case and, furthermore, not all observables are also investment instruments.

[The talk is based on joint work with former student Giorgia Galesso]