14:00
14:00
10:00
Reconstruction and statistical modelling of geometric measurements from the LiCAS project
Fraïssé's construction from a topos-theoretic perspective
Abstract
We present a topos-theoretic interpretation of (a categorical generalization of) Fraïssé's construction in Model Theory, with applications to countably categorical theories. The proof of our main theorem represents an instance of exploiting the interplay of syntactic, semantic and geometric ideas in the foundations of Topos Theory.
Scattering waves in elastic waveguides
Abstract
Layered (or laminated) structures are increasingly used in modern industry (e.g., in microelectronics and aerospace engineering). Integrity of such structures is mainly determined by the quality of their interfaces: poor adhesion or delamination can lead to a catastrophic failure of the whole structure. Can nonlinear waves help us to detect such defects?
We study the dynamics of a nonlinear longitudinal bulk strain wave in a split, layered elastic bar, made of nonlinearly hyperelastic Murnaghan material. We consider a symmetric two-layered bar and assume that there is perfect interface for x 0, where the x-axis is directed along the bar. Using matched asymptotic multiple-scales expansions and the integrability theory of the KdV equation by the Inverse Scattering Transform, we examine scattering of solitary waves and show that the defect causes generation of more than one secondary solitary waves from a single incident soliton and, thus, can be used to detect the defect.
The theory is supported by experimental results. Experiments have been performed in the Ioffe Institute in St. Petersburg (Russia), using holographic interferometry and laser induced generation of an incident compression solitary wave in two- and three-layered polymethylmethacrylate (PMMA) bars, bonded using ethyl cyanoacrylate-based (CA) adhesive.
Generalized traces and modified dimensionsIn this talk I will discuss how to construct generalized traces
Abstract
In this talk I will discuss how to construct generalized traces
and modified dimensions in certain categories of modules. As I will explain
there are several examples in representation theory where the usual trace
and dimension are zero, but these generalized traces and modified dimensions
are non-zero. Such examples include the representation theory of the Lie
algebra sl(2) over a field of positive characteristic and of Lie
superalgebras over the complex numbers. In these examples the modified
dimensions can be interpreted categorically and are closely related to some
basic notions involving the representation theory. This joint work with Jon
Kujawa and Bertrand Patureau.
Parametric approximation of geometric evolution equations and their coupling to bulk equations
13:00
Decision Making and Risky Choice in animals: a biological perspective.
Abstract
Virtually all decisions taken by living beings, from financial investments to life history, mate choice or anti-predator responses involve uncertainties and inter-temporal trade offs. Thus, hypothesis and formal models from these different fields often have heuristic value across disciplines. I will present theories and experiments about temporal discounting and risky choice originating in behavioural research on birds. Among other topics, I will address empirical observations showing risk aversion for gains and risk proneness for losses, exploring parallels and differences between Prospect Theory, Risk Sensitivity Theory and Scalar Utility Theory.
Sequential weak continuity of the determinant and the modelling of cavitation and fracture in nonlinear elasticity
Abstract
Motivated by the tensile experiments on titanium alloys of Petrinic et al
(2006), which show the formation of cracks through the formation and
coalescence of voids in ductile fracture, we consider the problem of
formulating a variational model in nonlinear elasticity compatible both
with cavitation and with the appearance of discontinuities across
two-dimensional surfaces. As in the model for cavitation of Müller and
Spector (1995) we address this problem, which is connected to the
sequential weak continuity of the determinant of the deformation gradient
in spaces of functions having low regularity, by means of adding an
appropriate surface energy term to the elastic energy. Based upon
considerations of invertibility we are led to an expression for the
surface energy that admits a physical and a geometrical interpretation,
and that allows for the formulation of a model with better analytical
properties. We obtain, in particular, important regularity properites of
the inverses of deformations, as well as the weak continuity of the
determinants and the existence of minimizers. We show further that the
creation of surface can be modelled by carefully analyzing the jump set of
the inverses, and we point out some connections between the analysis of
cavitation and fracture, the theory of SBV functions, and the theory of
cartesian currents of Giaquinta, Modica and Soucek. (Joint work with
Carlos Mora-Corral, Basque Center for Applied Mathematics).
On uniqueness of stationary black holes
Abstract
We prove uniqueness of the Kerr black holes within the connected, non-degenerate, analytic class of regular vacuum black holes. (This is joint work with Piotr Chrusciel. arXiv:0806.0016)
11:00
Zonal vs meridional velocity variance in the World Ocean: order in the chaotic ocean
The t-dependence and t-improper chromatic numbers of random graphs
Abstract
We consider a natural generalisation of the independence and chromatic numbers and study their behaviour in Erdos-Renyi random graphs. The t-dependence number of a graph G is the size of the largest subset of the vertices of G whose induced subgraph has maximum degree at most t. The t-improper chromatic number of G is the smallest number of parts needed in a partition of the vertex set of G such that each part induces a subgraph of maximum degree at most t. Clearly, when t = 0, these parameters are, respectively, the independence and chromatic numbers of G. For dense random graphs, we determine the asymptotic ehaviour of these parameters over the range of choices for the growth of t as a function of the number of vertices.
This is joint work with Nikolaos Fountoulakis and Colin McDiarmid.
Existence of conformal metric with constant Q-curvature
Abstract
We address a similar problem for the so-called Q-curvature, which plays an important role in conformal geometry and is a natural higher order analogue of the Gauss curvature. The problem is tackled using a variational and Morse theoretical approach.
Jensen's Theorem and a Simple Application
Abstract
This second 'problem sheet' of the term includes a proof of Jensen's Theorem for the number of zeroes of an analytic function in a disc, the usefulness of which is highlighted by an application to the Riemann zeta-function.
15:45
15:45
Gradient estimate for the heat semi-group and heat estimates on H-type groups
Abstract
In this talk, we give the asymptotics estimates for the heat kernel and its gradient estimates on H-type groups. Moreover, we get gradient estimates for the heat semi-group.
14:15
Apologies, Lecture cancelled
Abstract
Open Riemann surfaces and the Weil-Petersson Poisson structure
14:15
Preferences and implicit risk measures
Abstract
We discuss some connections between various notions of rationality in the face of uncertainty and the theory of convex risk measures, both in a static and a dynamic setting.
AdS/CFT and Generalized Complex Geometry
Abstract
Modelling the Circulatory System: Evaluating Arterial Pressure and Cardiac Output
Abstract
The circulatory system is the most important and amongst the most complicated mechanisms in the human body. Consisting of the heart, the arteries and the veins, it is amply aided by a variety of mechanisms aiming to facilitate adequate perfusion of the body tissues at the appropriate pressure. On this talk I am focusing on the development of a computational model which relates patient specific factors (age, gender, whether someone is an athlete/smokes etc) and their effects on different vascular regions which ultimately determine the arterial pressure and the cardiac output.