Thu, 05 Feb 2009

17:00 - 18:00
L3

Fraïssé's construction from a topos-theoretic perspective

Olivia Caramello
(Cambridge)
Abstract

We present a topos-theoretic interpretation of (a categorical generalization of) Fraïssé's construction in Model Theory, with applications to countably categorical theories. The proof of our main theorem represents an instance of exploiting the interplay of syntactic, semantic and geometric ideas in the foundations of Topos Theory.

Thu, 05 Feb 2009

16:30 - 17:30
DH 1st floor SR

Scattering waves in elastic waveguides

Karima Khusnutdinova (Loughborough) CANCELLED - WILL NOW BE IN TRINITY TERM 2009
Abstract

Layered (or laminated) structures are increasingly used in modern industry (e.g., in microelectronics and aerospace engineering). Integrity of such structures is mainly determined by the quality of their interfaces: poor adhesion or delamination can lead to a catastrophic failure of the whole structure. Can nonlinear waves help us to detect such defects?

We study the dynamics of a nonlinear longitudinal bulk strain wave in a split, layered elastic bar, made of nonlinearly hyperelastic Murnaghan material. We consider a symmetric two-layered bar and assume that there is perfect interface for x 0, where the x-axis is directed along the bar. Using matched asymptotic multiple-scales expansions and the integrability theory of the KdV equation by the Inverse Scattering Transform, we examine scattering of solitary waves and show that the defect causes generation of more than one secondary solitary waves from a single incident soliton and, thus, can be used to detect the defect.

The theory is supported by experimental results. Experiments have been performed in the Ioffe Institute in St. Petersburg (Russia), using holographic interferometry and laser induced generation of an incident compression solitary wave in two- and three-layered polymethylmethacrylate (PMMA) bars, bonded using ethyl cyanoacrylate-based (CA) adhesive.

Thu, 05 Feb 2009

14:30 - 15:30
L3

Generalized traces and modified dimensionsIn this talk I will discuss how to construct generalized traces

Nathan Geer
(Georgia Institute of Technology/Oxford)
Abstract

In this talk I will discuss how to construct generalized traces

and modified dimensions in certain categories of modules. As I will explain

there are several examples in representation theory where the usual trace

and dimension are zero, but these generalized traces and modified dimensions

are non-zero. Such examples include the representation theory of the Lie

algebra sl(2) over a field of positive characteristic and of Lie

superalgebras over the complex numbers. In these examples the modified

dimensions can be interpreted categorically and are closely related to some

basic notions involving the representation theory. This joint work with Jon

Kujawa and Bertrand Patureau.

Thu, 05 Feb 2009
13:00
DH 3rd floor SR

Decision Making and Risky Choice in animals: a biological perspective.

Alex Kacelnik
Abstract

Virtually all decisions taken by living beings, from financial investments to life history, mate choice or anti-predator responses involve uncertainties and inter-temporal trade offs. Thus, hypothesis and formal models from these different fields often have heuristic value across disciplines. I will present theories and experiments about temporal discounting and risky choice originating in behavioural research on birds. Among other topics, I will address empirical observations showing risk aversion for gains and risk proneness for losses, exploring parallels and differences between Prospect Theory, Risk Sensitivity Theory and Scalar Utility Theory.

Thu, 05 Feb 2009

12:30 - 13:30
Gibson 1st Floor SR

Sequential weak continuity of the determinant and the modelling of cavitation and fracture in nonlinear elasticity

Duvan Henao
(University of Oxford)
Abstract

Motivated by the tensile experiments on titanium alloys of Petrinic et al

(2006), which show the formation of cracks through the formation and

coalescence of voids in ductile fracture, we consider the problem of

formulating a variational model in nonlinear elasticity compatible both

with cavitation and with the appearance of discontinuities across

two-dimensional surfaces. As in the model for cavitation of Müller and

Spector (1995) we address this problem, which is connected to the

sequential weak continuity of the determinant of the deformation gradient

in spaces of functions having low regularity, by means of adding an

appropriate surface energy term to the elastic energy. Based upon

considerations of invertibility we are led to an expression for the

surface energy that admits a physical and a geometrical interpretation,

and that allows for the formulation of a model with better analytical

properties. We obtain, in particular, important regularity properites of

the inverses of deformations, as well as the weak continuity of the

determinants and the existence of minimizers. We show further that the

creation of surface can be modelled by carefully analyzing the jump set of

the inverses, and we point out some connections between the analysis of

cavitation and fracture, the theory of SBV functions, and the theory of

cartesian currents of Giaquinta, Modica and Soucek. (Joint work with

Carlos Mora-Corral, Basque Center for Applied Mathematics).

Thu, 05 Feb 2009

12:00 - 13:00
SR1

On uniqueness of stationary black holes

João Lopes Costa
(Oxford)
Abstract

We prove uniqueness of the Kerr black holes within the connected, non-degenerate, analytic class of regular vacuum black holes. (This is joint work with Piotr Chrusciel. arXiv:0806.0016)

Tue, 03 Feb 2009

17:00 - 18:00
L2

tba

Steve Smith
(University of Illinois, Chicago)
Abstract
Tue, 03 Feb 2009

14:30 - 15:30
L3

The t-dependence and t-improper chromatic numbers of random graphs

Ross Kang
(McGill)
Abstract

We consider a natural generalisation of the independence and chromatic numbers and study their behaviour in Erdos-Renyi random graphs. The t-dependence number of a graph G is the size of the largest subset of the vertices of G whose induced subgraph has maximum degree at most t. The t-improper chromatic number of G is the smallest number of parts needed in a partition of the vertex set of G such that each part induces a subgraph of maximum degree at most t. Clearly, when t = 0, these parameters are, respectively, the independence and chromatic numbers of G. For dense random graphs, we determine the asymptotic ehaviour of these parameters over the range of choices for the growth of t as a function of the number of vertices.

This is joint work with Nikolaos Fountoulakis and Colin McDiarmid.

Mon, 02 Feb 2009

17:00 - 18:00
Gibson 1st Floor SR

Existence of conformal metric with constant Q-curvature

Andrea Malchiodi
(SISSA)
Abstract
A classical problem in differential geometry is to deform the metric of a given manifold so that some of its curvatures become prescribed functions. Classical examples are the Uniformization problem for compact surfaces and the Yamabe problem for compact manifolds of dimension greater than two.
We address a similar problem for the so-called Q-curvature, which plays an important role in conformal geometry and is a natural higher order analogue of the Gauss curvature. The problem is tackled using a variational and Morse theoretical approach.
Mon, 02 Feb 2009

16:00 - 17:00
SR1

Jensen's Theorem and a Simple Application

Timothy Trudgian
(Mathematical Institute Oxford)
Abstract

This second 'problem sheet' of the term includes a proof of Jensen's Theorem for the number of zeroes of an analytic function in a disc, the usefulness of which is highlighted by an application to the Riemann zeta-function.

Mon, 02 Feb 2009
14:15
L3

Apologies, Lecture cancelled

Gabriele Mondello
(Imperial)
Abstract

Open Riemann surfaces and the Weil-Petersson Poisson structure

Mon, 02 Feb 2009
14:15
Oxford-Man Institute

Preferences and implicit risk measures

Professor Hans Föllmer
Abstract

We discuss some connections between various notions of rationality in the face of uncertainty and the theory of convex risk measures, both in a static and a dynamic setting.

Mon, 02 Feb 2009

12:00 - 13:00
L3

AdS/CFT and Generalized Complex Geometry

Maxime Gabella
(Oxford)
Abstract
We use generalized complex geometry to study the AdS/CFT correspondence in type IIB string theory.
Fri, 30 Jan 2009

16:30 - 17:00
DH 3rd floor SR

Modelling the Circulatory System: Evaluating Arterial Pressure and Cardiac Output

Athanasios Tsanas
(Oxford University)
Abstract

The circulatory system is the most important and amongst the most complicated mechanisms in the human body. Consisting of the heart, the arteries and the veins, it is amply aided by a variety of mechanisms aiming to facilitate adequate perfusion of the body tissues at the appropriate pressure. On this talk I am focusing on the development of a computational model which relates patient specific factors (age, gender, whether someone is an athlete/smokes etc) and their effects on different vascular regions which ultimately determine the arterial pressure and the cardiac output.