16:00
16:00
16:00
Recent variants and applications of the arithmetic large sieve
Abstract
The "large sieve" was invented by Linnik in order to attack problems involving the distribution of integers subject to certain constraints modulo primes, for which earlier methods of sieve theory were not suitable. Recently, the arithmetic large sieve inequality has been found to be capable of much wider application, and has been used to obtain results involving objects not usually considered as related to sieve theory. A form of the general sieve setting will be presented, together with sample applications; those may involve arithmetic properties of random walks on discrete groups, zeta functions over finite fields, modular forms, or even random groups.
Geometric Numerical Integration of Differential Equations
Abstract
Geometric integration is the numerical integration of a differential equation, while preserving one or more of its geometric/physical properties exactly, i.e. to within round-off error.
Many of these geometric properties are of crucial importance in physical applications: preservation of energy, momentum, angular momentum, phase-space volume, symmetries, time-reversal symmetry, symplectic structure and dissipation are examples. The field has tantalizing connections to dynamical systems, as well as to Lie groups.
In this talk we first present a survey of geometric numerical integration methods for differential equations, and then exemplify this by discussing symplectic vs energy-preserving integrators for ODEs as well as for PDEs.
13:00
13:00
Diffusion processes and coalescent trees.
Abstract
Diffusion process models for evolution of neutral genes have a particle dual coalescent process underlying them. Models are reversible with transition functions having a diagonal expansion in orthogonal polynomial eigenfunctions of dimension greater than one, extending classical one-dimensional diffusion models with Beta stationary distribution and Jacobi polynomial expansions to models with Dirichlet or Poisson Dirichlet stationary distributions. Another form of the transition functions is as a mixture depending on the mutant and non-mutant families represented in the leaves of an infinite-leaf coalescent tree.
The one-dimensional Wright-Fisher diffusion process is important in a characterization of a wider class of continuous time reversible Markov processes with Beta stationary distributions originally studied by Bochner (1954) and Gasper (1972). These processes include the subordinated Wright-Fisher diffusion process.
Semi-flat fibrations of special Lagrangian and coassociative submanifolds
Abstract
I will go over my paper (arXiv:0902.2135v1) which explains how semi-flat Calabi-Yau / G$_2$ manifolds can be constructed from minimal 3-submanifolds in a signature (3,3) vector space.
11:00
Indefinite Stochastic Linear-Quadratic Control: Theory, Computation and Applications
Decomposition theorem for abelian fibrations
Abstract
Derived direct image of a proper map with smooth source is a direct sum of simple perverse sheaves with shifts in the degrees. The supports of these simple perverse sheaves are obviously important topological invariants of the map. In general, it is difficult to determine these supports. This is possible for an abelian fibration under some assumptions. This determination has some amazing consequences on equality of number of points of certain algebraic varieties over finite fields and in particular, it implies the so called fundamental lemma in Langlands' program.
Introduction to pro-p groups and p-adic analytic groups (Held in ChCh, Tom Gate, Room 2)
Hochschild and block cohomology varieties are isomorphic
Jupiter's prograde jets: alternative stable states revealed by recent ground-based imaging
Linearisation principle for a system of equations of mixed type
Concentration and mixing for Markov chains
Abstract
17:00
Hardy's Uncertainty Principle, Convexity and Schrödinger Evolutions
Classical Primality Testing
Abstract
This talk will mention methods of testing whether a given integer is prime. Included topics are Carmichael numbers, Fermat and Euler pseudo-primes and results contingent on the Generalised Riemann Hypothesis.
15:45
The Alexander polynomial of sutured manifolds
Abstract
The notion of a sutured 3-manifold was introduced by Gabai. It is a powerful tool in 3-dimensional topology. A few years ago, Andras Juhasz defined an invariant of sutured manifolds called sutured Floer homology.
I'll discuss a simpler invariant obtained by taking the Euler characteristic of this theory. This invariant turns out to have many properties in common with the Alexander polynomial. Joint work with Stefan Friedl and Andras Juhasz.
15:45
Minimal position in branching random walk
Abstract
This talk is based on a joint work with Zhan Shi: We establish a second-order almost sure limit theorem for the minimal position in a one-dimensional super-critical branching random walk, and also prove a martingale convergence theorem which answers a question of Biggins and Kyprianou (2005). Our method applies furthermore to the study of directed polymers on a disordered tree. In particular, we give a rigorous proof of a phase transition phenomenon for the partition function (from the point of view of convergence in probability), already described by Derrida and Spohn (1988). Surprisingly, this phase transition phenomenon disappears in the sense of upper almost sure limits.
Choices of division sequences on complex elliptic curves
Abstract
Let $\mathbb{E}$ be an elliptic curve defined over a number field $k$,
and let $a\in\mathbb{E}(\mathbb{C})$ be a complex point. Among the
possible choices of sequences of division points of $a$, $(a_n)_n$
such that $a_1 = a$ and $na_{nm} = a_m$, we can pick out those which
converge in the complex topology to the identity. We show that the
algebraic content of this effect of the complex topology is very
small, in the sense that any set of division sequences which shares
certain obvious algebraic properties with the set of those which
converge to the identity is conjugated to it by a field automorphism
of $\mathbb{C}$ over $k$.
As stated, this is a result of algebra and number theory. However, in
proving it we are led ineluctably to use model theoretic techniques -
specifically the concept of "excellence" introduced by Shelah for the
analysis of $L_{\omega_1,\omega}$ categoricity, which reduces the
question to that of proving certain unusual versions of the theorems
of Mordell-Weil and Kummer-Bashmakov. I will discuss this and other
aspects of the proof, without assuming any model- or number-theoretic
knowledge on the part of my audience.
14:15