11:45
11:45
10:00
Multi-Scale Modelling of Root Systems
Some results on lovely pairs of geometric structures
Abstract
Let T be a (one-sorted first order) geometric theory (so T
has infinite models, T eliminates "there exist infinitely many" and
algebraic closure gives a pregeometry). I shall present some results
about T_P, the theory of lovely pairs of models of T as defined by
Berenstein and Vassiliev following earlier work of Ben-Yaacov, Pillay
and Vassiliev, of van den Dries and of Poizat. I shall present
results concerning superrosiness, the independence property and
imaginaries. As far as the independence property is concerned, I
shall discuss the relationship with recent work of Gunaydin and
Hieronymi and of Berenstein, Dolich and Onshuus. I shall also discuss
an application to Belegradek and Zilber's theory of the real field
with a subgroup of the unit circle. As far as imaginaries are
concerned, I shall discuss an application of one of the general
results to imaginaries in pairs of algebraically closed fields,
adding to Pillay's work on that subject.
Formation of defects in the harmonic map heat flow
Abstract
The harmonic map heat flow is a model for nematic liquid crystals and also has origins in geometry. We will introduce the model and discuss some of its mathematical properties. In particular, we will focus on the possibility that singularities may develop.
The rate at which singularities develop is investigated in settings with certain symmetries. We use the method of matched asymptotic expansions and identify different scenarios for singularity formation. More specifically, we distinguish between singularities that develop in finite time and those that need infinite time to form.
Finally, we discuss which results can be proven rigorously, as well as some open problems, and we address stability issues (ongoing work with JF Williams).
16:00
Numerical methods for palindromic eigenvalue problems
Abstract
We discuss numerical methods for the solution of the palindromic eigenvalue problem Ax=λ ATx, where A is a complex matrix. Such eigenvalue problems occur, for example, in the vibration analysis of rail tracks.
The structure of palindromic eigenvalue problems leads to a symmetry in the spectrum: all eigenvalues occur in reciprocal pairs. The need for preservation of this symmetry in finite precision arithmetic requires the use of structure-preserving numerical methods. In this talk, we explain how such methods can be derived.
13:00
SP/A Portfolio Choice Model in Continuous Time
Abstract
In this paper we employ the quantile formulation to solve the SP/A portfolio choice model in continuous time. We show that the original version of the SP/A model proposed by Lopes is ill-posed in the continuous-time setting. We then generalise the SP/A model to one where a utility function is included, while the probability weighting
(distortion) function is still present. The feasibility and well-posedness of the model are addressed and an explicit solution is derived. Finally, we study how the aspiration level and the probability weighting function affect the optimal solution
The moduli space of vector bundles on a Riemann surface
Abstract
I will briefly discuss the construction of the moduli spaces of (semi)stable bundles on a given curve. The main aim of the talk will be to describe various features of the geometry and topology of these moduli spaces, with emphasis on methods as much as on results. Topics may include irreducibility, cohomology, Verlinde numbers, Torelli theorems.
11:00
Representation growth vs subgroup growth (Held in ChCh, Tom Gate, Room 2)
Abstract
The subgroup growth of finitely generated groups was seen last term, in a lecture of Dan Segal. This time, we see representation growth, and how it is similar to, and different from, subgroup growth.
16:30
Flag varieties and the HOMFLY polynomial II
Abstract
Khovanov homology is an invariant of knots in $S^3$. In its original form,
it is a "homological version of the Jones polynomial"; Khovanov and
Rozansky have generalized it to other knot polynomials, including the
HOMFLY polynomial.
In the second talk, I'll discuss how Khovanov homology and its generalizations lead to a relation between the HOMFLY polynomial and the topology of flag varieties.
The edge correlation of random forests
Abstract
The conjecture was made by Pemantle that a forest chosen uniformly at random from all forests in any finite graph G has the edge-negative association property. We use enumerative methods to show that this conjecture is true for n large enough when G is a complete graph on n vertices and derive related results for random trees.
Flag varieties and the HOMFLY polynomial I
Abstract
Khovanov homology is an invariant of knots in $S^3$. In its original form,
it is a "homological version of the Jones polynomial"; Khovanov and
Rozansky have generalized it to other knot polynomials, including the
HOMFLY polynomial.
The first talk will be an introduction to Khovanov homology and its generalizations.
17:00
Minimizers of the Willmore functional under fixed conformal class
Abstract
We prove the existence of a smooth minimizer of the Willmore energy in the class of conformal immersions of a given closed Riemann surface
into $R^n$, $n = 3, 4$, if there is one conformal immersion with Willmore energy smaller than a certain bound $W_{n,p}$ depending on codimension and genus $p$ of the Riemann surface. For tori in codimension $1$, we know $W_{3,1} = 8\pi$ . Joint work with Enrst Kuwert.
15:45
15:45
Stochastic billiards in unbounded planar domains
Abstract
14:15
14:15