Algebra Research Group

Welcome to the pages of the Algebra group in the Mathematical Institute at Oxford. Here you will find information on our members, the seminars and other events we organise, news about us and the research networks we participate in. There are also lists of lecture courses related to our interests.

The research interests of the group span group theory, representation theory and algebraic aspects of geometry, among many other topics. For more detailed information on the people in our group and their individual research interests, please see our list of members.

If you are interested in undertaking graduate studies with us, please see the department's information for prospective graduate students. Post-doctoral positions and funding opportunities and faculty positions are listed on the Institute's vacancies page.

Details of the next scheduled seminar in each of the series we organise are listed below. For future events, please follow the link to each seminar's listings.

Algebra seminar

27 February 2018
Alexander Stasinski

Let $F$ be a non-Archimedean local field with ring of integers $\mathcal O$ and maximal ideal $\mathfrak p$. T. Shintani and G. Hill independently introduced a large class of smooth representations of $GL_N(\mathcal O)$, called regular representations. Roughly speaking they correspond to elements in the Lie algebra $M_N(\mathcal O)$ which are regular mod $\mathfrak p$ (i.e, having centraliser of dimension $N$). The study of regular representations of $GL_N(\mathcal O)$ goes back to Shintani in the 1960s, and independently and later, Hill, who both constructed the regular representations with even conductor, but left the much harder case of odd conductor open. In recent simultaneous and independent work, Krakovski, Onn and Singla gave a construction of the regular representations of $GL_N(\mathcal O)$ when the residue characteristic of $\mathcal O$ is not $2$.

In this talk I will present a complete construction of all the regular representations of $GL_N(\mathcal O)$. The approach is analogous to, and motivated by, the construction of supercuspidal representations of $GL_N(F)$ due to Bushnell and Kutzko. This is joint work with Shaun Stevens.

Representation Theory seminar

There are no seminars currently scheduled for this series.

An archive of previous events is also available.