Tue, 01 Dec 2020

14:15 - 15:15
Virtual

The deformed Dixmier-Moeglin equivalence for completed enveloping algebras

Adam Jones
(Manchester University)
Abstract

An algebra $R$ is said to satisfy the Dixmier-Moeglin equivalence if a prime ideal $P$ of $R$ is primitive if and only if it is rational, if and only if it is locally closed, and a commonly studied problem in non-commutative algebra is to classify rings satisfying this equivalence, e.g. $U(\mathfrak g)$ for a finite dimensional Lie algebra $\mathfrak g$. We explore methods of generalising this to a $p$-adic setting, where we need to weaken the statement. Specifically, if $\hat R$ is the $p$-adic completion of a $\mathbb Q_p$-algebra $R$, rather than approaching the Dixmier-Moeglin equivalence for $\hat R$ directly, we instead compare the classes of primitive, rational and locally closed prime ideals of $\hat R$ within suitable "deformations". The case we focus on is where $R=U(L)$ for a $\mathbb Z_p$-Lie algebra $L$, and the deformations have the form $\hat U(p^n L)$, and we aim to prove a version of the equivalence in the instance where $L$ is nilpotent.

Mon, 23 Nov 2020

16:00 - 17:00

Excursion Risk

RENYUAN XU
(University of Oxford)
Abstract

The risk and return profiles of a broad class of dynamic trading strategies, including pairs trading and other statistical arbitrage strategies, may be characterized in terms of excursions of the market price of a portfolio away from a reference level. We propose a mathematical framework for the risk analysis of such strategies, based on a description in terms of price excursions, first in a pathwise setting, without probabilistic assumptions, then in a Markovian setting.

 

We introduce the notion of δ-excursion, defined as a path which deviates by δ from a reference level before returning to this level. We show that every continuous path has a unique decomposition into δ-excursions, which is useful for scenario analysis of dynamic trading strategies, leading to simple expressions for the number of trades, realized profit, maximum loss and drawdown. As δ is decreased to zero, properties of this decomposition relate to the local time of the path. When the underlying asset follows a Markov process, we combine these results with Ito's excursion theory to obtain a tractable decomposition of the process as a concatenation of independent δ-excursions, whose distribution is described in terms of Ito's excursion measure. We provide analytical results for linear diffusions and give new examples of stochastic processes for flexible and tractable modeling of excursions. Finally, we describe a non-parametric scenario simulation method for generating paths whose excursion properties match those observed in empirical data.

Joint work with Anna Ananova and Rama Cont: https://ssrn.com/abstract=3723980

 

 

Mon, 16 Nov 2020

16:00 - 17:00

Elliptic stochastic quantisation and supersymmetry

MASSIMILIANO GUBINELLI
(Bonn University)
Abstract

Stochastic quantisation is, broadly speaking, the use of a stochastic differential equation to construct a given probability distribution. Usually this refers to Markovian Langevin evolution with given invariant measure. However we will show that it is possible to construct other kind of equations (elliptic stochastic partial differential equations) whose solutions have prescribed marginals. This connection was discovered in the '80 by Parisi and Sourlas in the context of dimensional reduction of statistical field theories in random external fields. This purely probabilistic results has a proof which depends on a supersymmetric formulation of the problem, i.e. a formulation involving a non-commutative random field defined on a non-commutative space. This talk is based on joint work with S. Albeverio and F. C. de Vecchi.

 

Thu, 26 Nov 2020

16:00 - 17:00

Regularity and time discretization of extended mean-field control problems: a McKean-Vlasov FBSDE approach

WOLFGANG STOCKINGER
(University of Oxford)
Abstract

We analyze the regularity of solutions and discrete-time approximations of extended mean-field control (extended MFC) problems, which seek optimal control of McKean-Vlasov dynamics with coefficients involving mean-field interactions both on the  state and actions, and where objectives are optimized over
open-loop strategies.

We show for a large class of extended MFC problems that the unique optimal open-loop control is 1/2-Hölder continuous in time. Based on the regularity of the solution, we prove that the value functions of such extended MFC problems can be approximated by those with piecewise constant controls and discrete-time state processes arising from Euler-Maruyama time stepping up to an order 1/2 error, which is optimal in our setting. Further, we show that any epsilon-optimal control of these discrete-time problems
converge to the optimal control of the original problems.

To establish the time regularity of optimal controls and the convergence of time discretizations, we extend the canonical path regularity results to general coupled 
McKean-Vlasov forward-backward stochastic differential equations, which are of independent interest.

This is based on join work joint work with C. Reisinger and Y. Zhang.

Fri, 23 Oct 2020
16:00
Virtual

North meets South colloquium

Martin Gallauer and Zhaohe Dai
Abstract

Martin Gallauer (North): "Algebraic algebraic geometry"
If a space is described by algebraic equations, its algebraic invariants are endowed with additional structure. I will illustrate this with some simple examples, and speculate on the meaning of the title of my talk.

Zhaohe Dai (South): "Two-dimensional material bubbles"
Two-dimensional (2D) materials are a relatively new class of thin sheets consisting of a single layer of covalently bonded atoms and have shown a host of unique electronic properties. In 2D material electronic devices, however, bubbles often form spontaneously due to the trapping of air or ambient contaminants (such as water molecules and hydrocarbons) at sheet-substrate interfaces. Though they have been considered to be a nuisance, I will discuss that bubbles can be used to characterize 2D materials' bending rigidity after the pressure inside being well controlled. I will then focus on bubbles of relatively large deformations so that the elastic tension could drive the radial slippage of the sheet on its substrate. Finally, I will discuss that the consideration of such slippage is vital to characterize the sheet's stretching stiffness and gives new opportunities to understand the adhesive and frictional interactions between the sheet and various substrates that it contacts.
 

Tue, 17 Nov 2020
12:00
Virtual

Causal Relations At Infinity

Peter Cameron
(DAMTP Cambridge)
Abstract

Motivated by an attempt to construct a theory of quantum gravity as a perturbation around some flat background, Penrose has shown that, despite being asymptotically flat, there is an inconsistency between the causal structure at infinity of Schwarzschild and Minkowski spacetimes. This suggests that such a perturbative approach cannot possibly work. However, the proof of this inconsistency is specific to 4 spacetime dimensions. In this talk I will discuss how this result extends to higher (and lower) dimensions. More generally, I will consider examples of how the causal structure of asymptotically flat spacetimes are affected by dimension and by the presence of mass (both positive and negative). I will then show how these ideas can be used to prove a higher dimensional extension of the positive mass theorem of Penrose, Sorkin and Woolgar.

Thu, 03 Dec 2020

16:00 - 17:30
Virtual

Kirigami

Lakshminarayanan Mahadevan
(Harvard)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Abstract

Kirigami, the relatively unheralded cousin of origami, is the art of cutting paper to articulate and deploy it as a whole. By varying the number, size, orientation and coordination of the cuts, artists have used their imagination and intuition to create remarkable sculptures in 2 and 3 dimensions. I will describe some of our attempts to quantify the inverse problem that artists routinely solve, combining elementary mathematical ideas, with computations and physical models. 

[[{"fid":"60095","view_mode":"media_portrait_large","fields":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_portrait_large","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-portrait-large","data-delta":"1"}}]]

 

Thu, 05 Nov 2020

16:00 - 17:30
Virtual

Stupid, but smart: chemotactic and autochemotactic effects in self-propelling droplets

Corinna Maass
(MPI Dynamics & Self-Organization)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Abstract

Artificial microswimmers are an emerging field of research, attracting
interest as testing beds for physical theories of complex biological
entities, as inspiration for the design of smart materials, and for the
sheer elegance, and often quite counterintuitive phenomena of
experimental nonlinear dynamics.

Self-propelling droplets are among the most simplified swimmer models
imaginable, requiring just three components (oil, water, surfactant). In
this talk, I will show how these inherently stupid objects can make
surprisingly smart decisions based on interactions with microfluidic
structures and self-generated and external chemical fields.

Subscribe to