Thu, 05 Nov 2020

16:00 - 17:30
Virtual

Stupid, but smart: chemotactic and autochemotactic effects in self-propelling droplets

Corinna Maass
(MPI Dynamics & Self-Organization)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Abstract

Artificial microswimmers are an emerging field of research, attracting
interest as testing beds for physical theories of complex biological
entities, as inspiration for the design of smart materials, and for the
sheer elegance, and often quite counterintuitive phenomena of
experimental nonlinear dynamics.

Self-propelling droplets are among the most simplified swimmer models
imaginable, requiring just three components (oil, water, surfactant). In
this talk, I will show how these inherently stupid objects can make
surprisingly smart decisions based on interactions with microfluidic
structures and self-generated and external chemical fields.

Tue, 03 Nov 2020

12:45 - 13:30

Network models for ponding on sea ice

Michael Coughlan
((Oxford University))
Abstract

Michael Coughlan (with Sam Howison, Ian Hewitt, Andrew Wells)

Arctic sea ice forms a thin but significant layer at the ocean surface, mediating key climate feedbacks. During summer, surface melting produces considerable volumes of water, which collect on the ice surface in ponds. These ponds have long been suggested as a contributing factor to the discrepancy between observed and predicted sea ice extent. When viewed at large scales ponds have a complicated, approximately fractal geometry and vary in area from tens to thousands of square meters. Increases in pond depth and area lead to further increases in heat absorption and overall melting, contributing to the ice-albedo feedback. 

Previous modelling work has focussed either on the physics of individual ponds or on the statistical behaviour of systems of ponds. In this talk I present a physically-based network model for systems of ponds which accounts for both the individual and collective behaviour of ponds. Each pond initially occupies a distinct catchment basin and evolves according to a mass-conserving differential equation representing the melting dynamics for bare and water-covered ice. Ponds can later connect together to form a network with fluxes of water between catchment areas, constrained by the ice topography and pond water levels. 

I use the model to explore how the evolution of pond area and hence melting depends on the governing parameters, and to explore how the connections between ponds develop over the melt season. Comparisons with observations are made to demonstrate the ways in which the model qualitatively replicates properties of pond systems, including fractal dimension of pond areas and two distinct regimes of pond complexity that are observed during their development cycle. 

Different perimeter-area relationships exist for ponds in the two regimes. The model replicates these relationships and exhibits a percolation transition around the transition between these regimes, a facet of pond behaviour suggested by previous studies. The results reinforce the findings of these studies on percolation thresholds in pond systems and further allow us to constrain pond coverage at this threshold - an important quantity in measuring the scale and effects of the ice-albedo feedback.

Tue, 20 Oct 2020

12:45 - 13:30

A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares

Zhen Shao
((Oxford University))
Abstract

We propose a subspace Gauss-Newton method for nonlinear least squares problems that builds a sketch of the Jacobian on each iteration. We provide global rates of convergence for regularization and trust-region variants, both in expectation and as a tail bound, for diverse choices of the sketching matrix that are suitable for dense and sparse problems. We also have encouraging computational results on machine learning problems.

Tue, 17 Nov 2020

14:15 - 15:15
Virtual

The Poisson spectrum of the symmetric algebra of the Virasoro algebra

Susan Sierra
(Edinburgh University)
Abstract

Let W be the Witt algebra of vector fields on the punctured complex plane, and let Vir be the Virasoro algebra, the unique nontrivial central extension of W.  We discuss work in progress with Alexey Petukhov to analyse Poisson ideals of the symmetric algebra of Vir.

We focus on understanding maximal Poisson ideals, which can be given as the Poisson cores of maximal ideals of Sym(Vir) and of Sym(W).  We give a complete classification of maximal ideals of Sym(W) which have nontrivial Poisson cores.  We then lift this classification to Sym(Vir), and use it to show that if $\lambda \neq 0$, then $(z-\lambda)$ is a maximal Poisson ideal of Sym(Vir).

Mon, 16 Nov 2020

16:00 - 17:00

Introduction to sieve theory and a variation on the prime k-tuples conjecture

Ollie McGrath
Abstract

Sieve methods are analytic tools that we can use to tackle problems in additive number theory. This talk will serve as a gentle introduction to the area. At the end we will discuss recent progress on a variation on the prime $k$-tuples conjecture which involves sums of two squares. No knowledge of sieves is required!

Mon, 26 Oct 2020

16:00 - 17:00
Virtual

From curves to arithmetic geometry: Parshin's trick

Jay Swar
Abstract

In 1983, Faltings proved Mordell's conjecture on the finiteness of $K$-points on curves of genus >1 defined over a number field $K$ by proving the finiteness of isomorphism classes of isogenous abelian varieties over $K$. The "first" major step from Mordell's conjecture to what Faltings did came 15 years earlier when Parshin showed that a certain conjecture of Shafarevich would imply Mordell's conjecture. In this talk, I'll focus on motivating and sketching Parshin's argument in an accessible manner and provide some heuristics on how to get from Faltings' finiteness statement to the Shafarevich conjecture.

Wed, 09 Sep 2020

16:00 - 17:00

An elementary proof of RH for curves over finite fields

Jared Duker Lichtman
Abstract

The Riemann hypothesis (RH) is one of the great open problems in mathematics. It arose from the study of prime numbers in an analytic context, and—as often occurs in mathematics—developed analogies in an algebraic setting, leading to the influential Weil conjectures. RH for curves over finite fields was proven in the 1940’s by Weil using algebraic-geometric methods. In this talk, we discuss an alternate proof of this result by Stepanov (and Bombieri), using only elementary properties of polynomials. Over the decades, the proof has been whittled down to a 5 page gem! Time permitting, we also indicate connections to exponential sums and the original RH.
 

Mon, 19 Oct 2020

16:00 - 17:00

Khovanskii's Theorem and Effective Results on Sumset Structure

Michael Curran
Abstract

A remarkable theorem due to Khovanskii asserts that for any finite subset $A$ of an abelian group, the cardinality of the $h$-fold sumset $hA$ grows like a polynomial for all sufficiently large $h$. However, neither the polynomial nor what sufficiently large means are understood in general. We obtain an effective version of Khovanskii's theorem for any $A \subset \mathbb{Z}$ whose convex hull is a simplex; previously such results were only available for $d = 1$. Our approach also gives information about the structure of $hA$, answering a recent question posed by Granville and Shakan. The work is joint with Leo Goldmakher at Williams College.

Mon, 12 Oct 2020

16:00 - 17:00
Virtual

Classical and elliptic polylogarithms

Nil Matthes
(Oxford)
Abstract

The Dirichlet class number formula gives an expression for the residue at s=1 of the Dedekind zeta function of a number field K in terms of certain quantities associated to K. Among those is the regulator of K, a certain determinant involving logarithms of units in K. In the 1980s, Don Zagier gave a conjectural expression for the values at integers s $\geq$ 2 in terms of "higher regulators", with polylogarithms in place of logarithms. The goal of this talk is to give an algebraic-geometric interpretation of these polylogarithms. Time permitting, we will also discuss a similar picture for Hasse--Weil L-functions of elliptic curves.
 

Subscribe to