Thu, 05 Nov 2020

14:00 - 15:00
Virtual

6d (2,0) SCFT - part 2

Marieke Van Beest and Pietro Ferrero
((Oxford University))
Thu, 29 Oct 2020

14:00 - 15:00
Virtual

6d (2,0) SCFT - part 1

Marieke Van Beest and Pietro Ferrero
((Oxford University))
Mon, 30 Nov 2020

16:00 - 17:00
Virtual

Eisenstein congruences and class groups

Jackie Lang
Abstract

I will discuss some of Mazur's work about congruences between Eisenstein series and cusp forms, and then end with an application to class groups of fields $\mathbb{Q}(N^{1/p})$, where $N$ and $p$ are primes.  I will only assume some algebraic number theory.  In particular, nothing about modular forms will be assumed.
 

Mon, 23 Nov 2020

16:00 - 17:00
Virtual

Local-global principles for norm equations

André Macedo
Abstract

Given an extension L/K of number fields, we say that the Hasse norm principle (HNP) holds if every non-zero element of K which is a norm everywhere locally is in fact a global norm from L. If L/K is cyclic, the original Hasse norm theorem states that the HNP holds. More generally, there is a cohomological description (due to Tate) of the obstruction to the HNP for Galois extensions. In this talk, I will present work (joint with Rachel Newton) developing explicit methods to study this principle for non-Galois extensions. As a key application, I will describe how these methods can be used to characterize the HNP for extensions whose normal closure has Galois group A_n or S_n. I will additionally discuss some recent generalizations of these methods to study the Hasse principle and weak approximation for multinorm equations as well as consequences in the statistics of these local-global principles.

 

Mon, 09 Nov 2020

16:00 - 17:00
Virtual

Restriction Problems in Representation Theory

George Robinson
(Oxford)
Abstract

We discuss the problem in representation theory of decomposing restricted representations. We start classically with the symmetric groups via Young diagrams and Young tableaux, and then move into the world of Lie groups. These problems have connections with both physics and number theory, and if there is time I will discuss the Gan-Gross-Prasad conjectures which predict results on restrictions for algebraic groups over both local and global fields. The pre-requisites will build throughout the talk, but it should be accessible to anyone with some knowedge of both finite groups and Lie groups.

Mon, 02 Nov 2020

16:00 - 17:00
Virtual

Random multiplicative functions

Valerie Kovaleva
Abstract

In this talk I will give an introduction to random multiplicative functions, and cover the recent developments in this area. I will also explain how RMF's are connected to some of the important open problems in Analytic Number Theory.

 
Fri, 27 Nov 2020

16:00 - 17:00
Virtual

Thoughts on preparing for interviews in the new online world

Abstract

In this session we will discuss how interviewing and being interviewed has changed now that interviews are conducted online. We will have a panel comprising Marya Bazzi, Mohit Dalwadi, Sam Cohen, Ian Griffiths and Frances Kirwan who have either experienced being interviewed online and have interviewed online and we will compare experiences with in-person interviews. 

Fri, 06 Nov 2020

16:00 - 17:00
Virtual

North Meets South colloquium

Agnese Barbensi and Wolfger Peelaers
Abstract
Agnese Barbensi
Title: Knotted biopolymers
Abstract: Many biopolymers -most notably DNA- are knotted, or present some entanglement phenomena. The geometry and topology of these biopolymers has profound effects on their functioning. Using tools coming from topology and knot theory can help understanding the relations between the spatial arrangement and the behaviour of these molecules. In this talk we will give a brief overview of some useful techniques and recent work in this area. 
 
Wolfger Peelaers
Title: Vertex operator algebraic structures in quantum field theory
Abstract: Quantum field theory was originally developed to address questions involving interacting elementary particles, but ever since it has also provided, time and again, a bridge between ideas, concepts, and structures in mathematics and observables in physics. In this talk I will describe a remarkable connection of that type between vertex operator algebras and a class of highly symmetrical quantum field theories.
Subscribe to