Fri, 12 Feb 2021

14:00 - 15:00
Virtual

Fluid-induced fracturing of ice sheets and ice shelves

Yao Lai
(Princeton University)
Abstract

The interplay between fluid flows and fractures is ubiquitous in Nature and technology, from hydraulic fracturing in the shale formation to supraglacial lake drainage in Greenland and hydrofracture on Antarctic ice shelves.

In this talk I will discuss the above three examples, focusing on the scaling laws and their agreement with lab experiments and field observations. As climate warms, the meltwater on Antarctic ice shelves could threaten their structural integrity through propagation of water-driven fractures. We used a combination of machine learning and fracture mechanics to understand the stability of fractures on ice shelves. Our result also indicates that as meltwater inundates the surface of ice shelves in a warm climate, their collapse driven by hydrofracture could significantly influence the flow of the Antarctic Ice Sheets. 

Fri, 29 Jan 2021

14:00 - 15:00
Virtual

Energetics of volcanic eruptions in the deep oceans: linking ash dispersal and megaplume generation

Sam Pegler
(University of Leeds)
Abstract

Deep-marine volcanism drives Earth's most energetic transfers of heat and mass between the crust and the oceans. Yet little is known of the primary source and intensity of the energy release that occurs during seafloor volcanic events owing to the lack of direct observations. Seafloor magmatic activity has nonetheless been correlated in time with the appearance of massive plumes of hydrothermal fluid known as megaplumes. However, the mechanism by which megaplumes form remains a mystery. By utilising observations of pyroclastic deposits on the seafloor, we show that their dispersal required an energy discharge that is sufficiently powerful (1-2 TW) to form a hydrothermal discharge with characteristics that align precisely with those of megaplumes observed to date. The result produces a conclusive link between tephra production, magma extrusion, tephra dispersal and megaplume production. However, the energy flux is too high to be explained by a purely volcanic source (lava heating), and we use our constraints to suggest other more plausible mechanisms for megaplume creation. The talk will cover a combination of new fluid mechanical fundamentals in volcanic transport processes, inversion methods and their implications for volcanism in the deep oceans.

Fri, 04 Dec 2020

14:00 - 15:00
Virtual

Vortices and jets in planetary cores

Celine Guervilly
(Newcastle University)
Abstract

Convection is the main heat transport process in the liquid cores of planets and the primary energy source for planetary magnetic fields. These convective motions are thought to be turbulent and strongly constrained by rotation. In this talk, I will discuss the large-scale flows (zonal jets and vortices) that form in this rapidly-rotating turbulent regime, which we explore with numerical models.

Fri, 06 Nov 2020

14:00 - 15:00
Virtual

Some multiphase buoyancy driven flows in the environment : aerosols, ash and bubbles

Andy Woods
(University of Cambridge)
Abstract

In this talk, I will present a series of new experimental data, supported by theoretical models, of the transport of ash, aerosols and bubbles in multiphase plumes rising through stratified environments, focussing on the structure of flow and the dispersal of the different phases. The models have relevance for the dispersal of volcanic ash in the atmosphere and ocean, the mixing of aerosols in buildings, and the fate of suspended sediment produced during deep sea mining. 

Fri, 20 Nov 2020

14:00 - 15:00
Virtual

Crust formation and magma transfer on the Moon

Chloe Michaut
(École Normale Supérieure de Lyon)
Abstract

The classical fractional crystallisation scenario for magma ocean solidification on the Moon suggests that its crust formed by flotation of light anorthite minerals on top of a liquid ocean, which has been used to explain the anorthositic composition of the lunar crust. However, this model points to rapid crustal formation over tens of million years and struggles to predict the age range of primitive ferroan anorthosites from 4.5 and 4.3 Ga. 

Here I will present a new paradigm of slushy magma ocean crystallisation in which crystals are suspended throughout the magma ocean, and the lunar crust forms by magmatic processes over several hundreds of thousand years.

We will then focus on the effects of the particular characteristics of this primary crust on the transport and eruption of magma on the Moon.

Fri, 23 Oct 2020

14:00 - 15:00
Virtual

Snow evolution through meltwater percolation and compaction

Colin Meyer
(Dartmouth)
Abstract

Snow densification and meltwater refreezing store water in alpine regions and transform snow into ice on the surface of glaciers. Despite their importance in determining snow-water equivalent and glacier-induced sea level rise, we still lack a complete understanding of the physical mechanisms underlying snow compaction and the infiltration of meltwater into snowpacks. Here we (i) analyze snow compaction experiments as a promising direction for determining the rheology of snow though its many stages of densification and (ii) solve for the motion of refreezing fronts and for the temperature increase due to the release of latent heat, which we compare to temperature observations from the Greenland Ice Sheet (Humphrey et al., 2012). In the first part, we derive a mixture theory for compaction and air flow through the porous snow (cf. Hewitt et al. 2016) to compare against laboratory data (Wang and Baker, 2013). We find that a plastic compaction law explains experimental results. Taking standard forms for the permeability and effective pressure as functions of the porosity, we show that this compaction mode persists for a range of densities and overburden loads (Meyer et al., 2020). We motivate the second part of the talk by the observed melting at high elevations on the Greenland Ice Sheet, which causes the refreezing layers that are observed in ice cores. Our analysis shows that as surface temperatures increase, the capacity for meltwater storage in snow decreases and surface runoff increases leading to sea level rise (Meyer and Hewitt, 2017). Together these studies provide a holistic picture for how snow changes through compaction and the role of meltwater percolation in altering the temperature and density structure of surface snow.

Tue, 20 Oct 2020
12:00
Virtual

Construction of Cauchy data for the dynamical formation of apparent horizons and the Penrose Inequality

Martin Lesourd
(BHI Harvard)
Abstract

We construct a class of Cauchy initial data without (marginally) trapped surfaces whose future evolution is a trapped region bounded by an apparent horizon, i.e., a smooth hypersurface foliated by MOTS. The estimates obtained in the evolution lead to the following conditional statement: if Kerr Stability holds, then this kind of initial data yields a class of scale critical vacuum examples of Weak Cosmic Censorship and the Final State Conjecture. Moreover, owing to estimates for the ADM mass of the data and the area of the MOTS, the construction gives a fully dynamical vacuum setting in which to study the Spacetime Penrose Inequality. We show that the inequality is satisfied for an open region in the Cauchy development of this kind of initial data, which itself is controllable by the initial data. This is joint work with Nikos Athanasiou https://arxiv.org/abs/2009.03704.

Wed, 14 Oct 2020
10:00
Virtual

The Milnor-Wood inequality, and Affine Manifolds

Mehdi Yazdi
(University of Oxford)
Abstract

I will explain what it means for a manifold to have an affine structure and give an introduction to Benzecri's theorem stating that a closed surface admits an affine structure if and only if its Euler characteristic vanishes. I will also talk about an algebraic-topological generalization, due to Milnor and Wood, that bounds the Euler class of a flat circle bundle. No prior familiarity with the concepts is necessary.

Wed, 04 Nov 2020
10:00
Virtual

Is Invariable Generation Hereditary?

Gil Goffer
(Weizmann Institute of Science)
Abstract

I will discuss the notion of invariably generated groups, its importance, and some intuition. I will then present a construction of an invariably generated group that admits an index two subgroup that is not invariably generated. The construction answers questions of Wiegold and of Kantor-Lubotzky-Shalev. This is a joint work with Nir Lazarovich.

Wed, 28 Oct 2020
10:00
Virtual

(Beyond) Quasi-isometric Rigidity of Lattices in Lie Groups

Ido Grayevsky
(University of Oxford)
Abstract

'Quasi-isometric rigidity' in group theory is the slogan for questions of the following nature: let A be some class of groups (e.g. finitely presented groups). Suppose an abstract group H is quasi-isometric to a group in A: does it imply that H is in A? Such statements link the coarse geometry of a group with its algebraic structure. 

 

Much is known in the case A is some class of lattices in a given Lie group. I will present classical results and outline ideas in their proofs, emphasizing the geometric nature of the proofs. I will focus on one key ingredient, the quasi-flat rigidity, and discuss some geometric objects that come into play, such as neutered spaces, asymptotic cones and buildings. I will end the talk with recent developments and possible generalizations of these results and ideas.

Subscribe to