Purely infinite C*-algebras and their classification
Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home
Abstract
Cuntz introduced pure infiniteness for simple C*-algebras as a C*-algebraic analogue of type III von Neumann factors. Notable examples include the Calkin algebra B(H)/K(H), the Cuntz algebras O_n, simple Cuntz-Krieger algebras, and other C*-algebras you would encounter in the wild. The separable, nuclear ones were classified in celebrated work by Kirchberg and Phillips in the mid 90s. I will talk about these topics including the non-simple case if time permits.