Tue, 29 May 2018

14:30 - 15:00
L5

Optimisation of a Steam Turbine Blade Path

Jonathan Grant-Peters
(InFoMM)
Abstract

The vast majority of the world's electricity is generated by converting thermal energy into electric energy by use of a steam turbine. Siemens are one of the worlds leading manufacturers of such
turbines, and aim to design theirs to be as efficient as possible. Using an internally built software, Siemens can estimate the efficiency which would result from a turbine design. In this presentation, we present the approaches that have been taken to improve turbine design using mathematical optimisation software. In particular, we focus on the failings of the approach currently taken, the obstacles in place which make solving this problem difficult, and the approach we intend to take to find a locally optimal solution.

Wed, 30 May 2018

16:00 - 17:00
C5

The pants graph

Esmee te Winkel
(University of Warwick)
Abstract

In the 80s, Hatcher and Thurston introduced the pants graph as a tool to prove that the mapping class group of a closed, orientable surface is finitely presented. The pants graph remains relevant for the study of the mapping class group, sitting between the marking graph and the curve graph. More precisely, there is a sequence of natural coarse lipschitz maps taking the marking graph via the pants graph to the curve graph.

A second motivation for studying the pants graph comes from Teichmüller theory. Brock showed that the pants graph can be interpreted as a combinatorial model for Teichmüller space with the Weil-Petersson metric.

In this talk I will introduce the pants graph, discuss some of its properties and state a few open questions.

Tue, 29 May 2018

12:45 - 13:30
C5

Homogenisation Applied to Electrical Calcination of Carbon Materials

Caoimhe Rooney
Abstract

Calcination describes the heat treatment of anthracite particles in a furnace to produce a partially-graphitised material which is suitable for use in electrodes and for other met- allurgical applications. Electric current is passed through a bed of anthracite particles, here referred to as a coke bed, causing Ohmic heating and high temperatures which result in the chemical and structural transformation of the material.

Understanding the behaviour of such mechanisms on the scale of a single particle is often dealt with through the use of computational models such as DEM (Discrete Element Methods). However, because of the great discrepancy between the length scale of the particles and the length scale of the furnace, we can exploit asymptotic homogenisation theory to simplify the problem.  

In this talk, we will present some results relating to the electrical and thermal conduction through granular material which define effective quantities for the conductivities by considering a microscopic representative volume within the material. The effective quantities are then used as parameters in the homogenised macroscopic model to describe calcination of anthracite. 

Tue, 04 Dec 2018

12:00 - 13:00
C4

Pairwise Approximations of Non-markovian Network Epidemics

Gergely Röst
(University of Oxford)
Abstract

Joint work with Zsolt Vizi (Bolyai Institute, University of Szeged, Hungary), Istvan Kiss (Department
of Mathematics, University of Sussex, United Kingdom)

Pairwise models have been proven to be a flexible framework for analytical approximations
of stochastic epidemic processes on networks that are in many situations much more accurate
than mean field compartmental models. The non-Markovian aspects of disease transmission
are undoubtedly important, but very challenging to incorporate them into both numerical
stochastic simulations and analytical investigations. Here we present a generalization of
pairwise models to non-Markovian epidemics on networks. For the case of infectious periods
of fixed length, the resulting pairwise model is a system of delay differential equations, which
shows excellent agreement with results based on the explicit stochastic simulations. For more
general distribution classes (uniform, gamma, lognormal etc.) the resulting models are PDEs
that can be transformed into systems of integro-differential equations. We derive pairwise
reproduction numbers and relations for the final epidemic size, and initiate a systematic
study of the impact of the shape of the particular distributions of recovery times on how
the time evolution of the disease dynamics play out.

Tue, 12 Jun 2018

14:30 - 15:00
L5

A dimensionality reduction technique for global optimisation

Adilet Otemissov
(Oxford University)
Abstract


(Joint work with Coralia Cartis) The problem of finding the most extreme value of a function, also known as global optimization, is a challenging task. The difficulty is associated with the exponential increase in the computational time for a linear increase in the dimension. This is known as the ``curse of dimensionality''. In this talk, we demonstrate that such challenges can be overcome for functions with low effective dimensionality --- functions which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyper-parameter optimization for neural networks, heuristic algorithms for combinatorial optimization problems and complex engineering simulations.
We propose the use of random subspace embeddings within a(ny) global minimisation algorithm, extending the approach in Wang et al. (2013). We introduce a new framework, called REGO (Random Embeddings for GO), which transforms the high-dimensional optimization problem into a low-dimensional one. In REGO, a new low-dimensional problem is formulated with bound constraints in the reduced space and solved with any GO solver. Using random matrix theory, we provide probabilistic bounds for the success of REGO, which indicate that this is dependent upon the dimension of the embedded subspace and the intrinsic dimension of the function, but independent of the ambient dimension. Numerical results demonstrate that high success rates can be achieved with only one embedding and that rates are for the most part invariant with respect to the ambient dimension of the problem.
 

Tue, 30 Oct 2018

19:00 - 20:00

Oxford Mathematics London Public Lecture: 'To a physicist I am a mathematician; to a mathematician, a physicist' - Roger Penrose in conversation with Hannah Fry SOLD OUT

Roger Penrose and Hannah Fry
(University of Oxford & the Science Museum)
Abstract

Roger Penrose is the ultimate scientific all-rounder.  He started out in algebraic geometry but within a few years had laid the foundations of the modern theory of black holes with his celebrated paper on gravitational collapse. His exploration of foundational questions in relativistic quantum field theory and quantum gravity, based on his twistor theory, had a huge impact on differential geometry. His work has influenced both scientists and artists, notably Dutch graphic artist M. C. Escher.

Roger Penrose is one of the great ambassadors for science. In this lecture and in conversation with mathematician and broadcaster Hannah Fry he will talk about work and career.

This lecture is in partnership with the Science Museum in London where it will take place. Please email @email to register.

You can also watch online:

https://www.facebook.com/OxfordMathematics

https://livestream.com/oxuni/Penrose-Fry

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 09 Oct 2018

19:30 - 21:15
L1

James Sparks & the City of London Sinfonia - Bach and the Cosmos SOLD OUT

James Sparks and City of London Sinfonia
(University of Oxford)
Abstract

Johann Sebastian Bach was the most mathematical of composers. Oxford Mathematician and Cambridge organ scholar James Sparks will explain just how mathematical and City of London Sinfonia will elaborate with a special performance of the Goldberg Variations. 

---

James Sparks - Bach and the Cosmos (30 minutes)

City of London Sinfonia - J S Bach arr. Sitkovetsky, Goldberg Variations (70 minutes)

Alexandra Wood - Director/Violin

--

Please email @email to register

Watch live:
https://www.facebook.com/OxfordMathematics
https://www.livestream.com/oxuni/Bach-Cosmos

The Oxford Mathematics Public Lectures are generously supported by XTX Markets

It is a little known (and entirely untrue) fact that Isaac Newton's alchemical investigations led him to a formula for a potion to cure baldness. Ten mathematicians from Oxford and UCL spent Saturday night (and Sunday morning) running around central London solving puzzles and gathering clues and ingredients to recreate this potion, before a pedalo race across the Serpentine to present a vial of the wonder cure to the President of the Royal Society.

Tue, 05 Feb 2019

17:00 - 18:15
L1

James Maynard - Prime Time: How simple questions about prime numbers affect us all

James Maynard
(University of Oxford)
Further Information

Why should anyone care about primes? Well, prime numbers are important, not just in pure mathematics, but also in the real world. Various different, difficult problems in science lead to seemingly very simple questions about prime numbers. Unfortunately, these seemingly simple problems have stumped mathematicians for thousands of years, and are now some of the most notorious open problems in mathematics!

Oxford Research Professor James Maynard is one of the brightest young stars in world mathematics at the moment, having made dramatic advances in analytic number theory in recent years. 

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Maynard

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Subscribe to