Tue, 24 Sep 2019

12:00 - 13:00
C1

A graph based approach for functional urban areas delineation

Lionel Houssou
(University of La Rochelle)
Abstract

In an increasingly urbanized world, where cities are changing continuously, it is essential for policy makers to have access to regularly updated decision-making tools for an effective management of urban areas. An example of these tools is the delineation of cities into functional areas which provides knowledge on high spatial interaction zones and their socioeconomic composition. In this paper, we presented a method for the structural analysis of a city, specifically for the determination of its functional areas, based on communities detection in graphs. The nodes of the graph correspond to geographical units resulting from a cartographic division of the city according to the road network. The edges are weighted using a Gaussian distance-decay function and the amount of spatial interactions between nodes. Our approach optimize the modularity to ensure that the functional areas detected have strong interactions within their borders but lower interactions outside. Moreover, it leverages on POIs' entropy to maintain a good socioeconomic heterogeneity in the detected areas. We conducted experiments using taxi trips and POIs datasets from the city of Porto, as a study case. Trough those experiments, we demonstrate the ability of our method to portray functional areas while including spatial and socioeconomic dynamics.
 

20 September sees the Climate Protest come to Oxford. Whatever your view of the tactics the fact is that the University itself produces regular research on the impact of meat consumption on climate and health and is launching a wide campaign on sustainability over the next few weeks (#TruePlanet).

Tue, 12 Nov 2019

12:00 - 13:15
L4

Dark Matter, Modified Gravity - Or What?

Sabine Hossenfelder
(Frankfurt Institute for Advanced Studies)
Abstract

In this talk I will explain (a) what observations speak for the
hypothesis of dark matter, (b) what observations speak for
the hypothesis of modified gravity, and (c) why it is a mistake
to insist that either hypothesis on its own must
explain all the available data. The right explanation, I will argue,
is instead a suitable combination of dark matter and modified
gravity, which can be realized by the idea that dark matter
has a superfluid phase.

Tue, 15 Oct 2019

12:00 - 13:15
L4

Gauged sigma models and magnetic skyrmions

Bernd Schroers
(Heriot Watt University Edinburgh)
Abstract

Magnetic skyrmions are topological solitons which occur in a large class
of ferromagnetic materials and which are currently attracting much
attention in the condensed matter community because of  their possible
use  in future magnetic information storage technology.  The talk is
about an integrable model for magnetic skyrmions, introduced in a recent
paper (arxiv 1812.07268) and generalised in (arxiv 1905.06285). The
model can be solved by interpreting it as a gauged nonlinear sigma
model. In the talk will explain the model and the geometry behind its
integrability, and discuss some of the solutions and their physical
interpretation.

Tue, 11 Feb 2020

15:30 - 16:30
L4

Ranks of cubic surfaces

Anna Seigal
(Oxford)
Abstract

There are various notions of rank, which measure the complexity of a tensor or polynomial. Cubic surfaces can be viewed as symmetric tensors.  We consider the non-symmetric tensor rank and the symmetric Waring rank of cubic surfaces, and show that the two notions coincide over the complex numbers. The results extend to order three tensors of all sizes, implying the equality of rank and symmetric rank when the symmetric rank is at most seven. We then explore the connection between the rank of a polynomial and the singularities of its vanishing locus, and we find the possible singular loci of a cubic surface of given rank. This talk is based on joint work with Eunice Sukarto.
 

Thu, 20 Feb 2020

16:00 - 17:30
L3

The brain's waterscape

Marie Elisabeth Rognes
(Simula Research Laboratory)
Further Information

Short bio:

Marie E. Rognes is Chief Research Scientist and Research Professor in Scientific Computing and Numerical Analysis at Simula Research Laboratory, Oslo, Norway. She received her Ph.D from the University of Oslo in 2009 with an extended stay at the University of Minneapolis, Twin Cities, Minneapolis, US. She has been at Simula Research Laboratory since 2009, led its Department for Biomedical Computing from 2012-2016 and currently leads a number of research projects focusing on mathematical modelling and numerical methods for brain mechanics including an ERC Starting Grant in Mathematics. She won the 2015 Wilkinson Prize for Numerical Software, the 2018 Royal Norwegian Society of Sciences and Letters Prize for Young Researchers within the Natural Sciences, and was a Founding Member of the Young Academy of Norway.

Abstract

Your brain has its own waterscape: whether you are reading or sleeping, fluid flows around or through the brain tissue and clears waste in the process. These physiological processes are crucial for the well-being of the brain. In spite of their importance we understand them but little. Mathematics and numerics could play a crucial role in gaining new insight. Indeed, medical doctors express an urgent need for modeling of water transport through the brain, to overcome limitations in traditional techniques. Surprisingly little attention has been paid to the numerics of the brain’s waterscape however, and fundamental knowledge is missing. In this talk, I will discuss mathematical models and numerical methods for the brain's waterscape across scales - from viewing the brain as a poroelastic medium at the macroscale and zooming in to studying electrical, chemical and mechanical interactions between brain cells at the microscale.
 

A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube
Sullivan, G Stürwald, T Tollefson, K Stuttard, T Tomankova, L Terliuk, A Tenholt, F Taboada, I Tilav, S Tselengidou, M Toscano, S Turley, C Turcati, A Turcotte, R Tönnis, C Trettin, A Tung, C Tosi, D Vandenbroucke, J Elorrieta, M Eijndhoven, N Driessche, W Vanheule, S Unger, E Usner, M The Astrophysical Journal: an international review of astronomy and astronomical physics (18 Feb 2020)
Subscribe to