Bringing together talks, workshops, hands-on activities and walking tours, the Oxford Maths Festival is an extravaganza of all the wonderful curiosities mathematics holds. Board games, sport, risk and the wisdom of crowds courtesy of Marcus du Sautoy are all on the menu.

Over two days you can immerse yourself in a wide range of events, with something for everyone, no matter what your age or prior mathematical experience. 

Efficient Octree-Based Volumetric SLAM Supporting Signed-Distance and Occupancy Mapping
Vespa, E Nikolov, N Grimm, M Nardi, L Kelly, P Leutenegger, S IEEE Robotics and Automation Letters volume 3 issue 2 1144-1151 (08 Feb 2018)
Wed, 25 Apr 2018
15:00
L4

Blockchain Technology: A Cryptographic Perspective

Ivan VISCONTI
(University of Salerno (ITALY))
Abstract


There is currently a large interest in the applications of the Blockchain technology. After the well known success of the cryptocurrency Bitcoin, several other real-world applications of Blockchain technology have been proposed, often raising privacy concerns. We will discuss the potential of advanced cryptographic tools in relaxing the tension between pros and cons of this technology.

Mon, 28 May 2018

14:15 - 15:15
L4

The generalized Kahler potential

Marco Gualtieri
(Toronto)
Abstract

I will explain our recent description of the fundamental degrees of freedom underlying a generalized Kahler structure. For a usual Kahler
structure, it is well-known that the geometry is determined by a complex structure, a Kahler class, and the choice of a positive(1,1)-form in this class, which depends locally on only a single real-valued function: the Kahler potential. Such a description for generalized Kahler geometry has been sought since it was discovered in1984. We show that a generalized Kahler structure of symplectic type is determined by a pair of holomorphic Poisson manifolds, a
holomorphic symplectic Morita equivalence between them, and the choice of a positive Lagrangian brane bisection, which depends locally on
only a single real-valued function, which we call the generalized Kahler potential. To solve the problem we make use of, and generalize,
two main tools: the first is the notion of symplectic Morita equivalence, developed by Weinstein and Xu to study Poisson manifolds;
the second is Donaldson's interpretation of a Kahler metric as a real Lagrangian submanifold in a deformation of the holomorphic cotangent bundle.

 

Atmospheric neutrino results from IceCube-DeepCore and plans for PINGU
Jason Koskinen, D Journal of Physics: Conference Series volume 888 issue 1 (20 Sep 2017)
Subscribe to