Tue, 24 Apr 2018

14:30 - 15:00
L3

Randomized algorithms for computing full, rank-revealing factorizations

Abinand Gopal
(Oxford)
Abstract

Over the past decade, the randomized singular value decomposition (RSVD) algorithm has proven to be an efficient, reliable alternative to classical algorithms for computing low-rank approximations in a number of applications. However, in cases where no information is available on the singular value decay of the data matrix or the data matrix is known to be close to full-rank, the RSVD is ineffective. In recent years, there has been great interest in randomized algorithms for computing full factorizations that excel in this regime.  In this talk, we will give a brief overview of some key ideas in randomized numerical linear algebra and introduce a new randomized algorithm for computing a full, rank-revealing URV factorization.

Fri, 27 Apr 2018
12:00
L4

Is dispersion a stabilizing or destabilizing mechanism? Landau-damping induced by fast background flows

Edriss Titi
(Texas A&M University)
Abstract

In this talk I will present a unified approach for the effect of fast rotation and dispersion as an averaging mechanism for, on the one hand, regularizing and stabilizing certain evolution equations, such as the Navier-Stokes and Burgers equations. On the other hand, I will  also present some results in which large dispersion acts as a destabilizing mechanism for the long-time dynamics of certain dissipative evolution equations, such as the Kuramoto-Sivashinsky equation. In addition, I will present some new results concerning two- and three-dimensional turbulent flows with high Reynolds numbers in periodic domains, which exhibit ``Landau-damping" mechanism due to large spatial average in the initial data.

Thu, 07 Jun 2018
12:00
L5

On singular limits for the Vlasov-Poisson system

Mikaela Iacobelli
(Durham University)
Abstract

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains a fundamental open problem. In this talk we present the rigorous justification of the quasineutral limit for very small but rough perturbations of analytic initial data for the Vlasov-Poisson equation in dimensions 1, 2, and 3. Also, we discuss a recent result in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Thu, 10 May 2018
12:00
L4

Untangling of trajectories for non-smooth vector fields and Bressan's Compactness Conjecture

Paolo Bonicatto
(Universität Basel)
Abstract

Given $d \ge 1$, $T>0$ and a vector field $\mathbf b \colon [0,T] \times \mathbb R^d \to \mathbb R^d$, we study the problem of uniqueness of weak solutions to the associated transport equation $\partial_t u + \mathbf b \cdot \nabla u=0$ where $u \colon [0,T] \times \mathbb R^d \to \mathbb R$ is an unknown scalar function. In the classical setting, the method of characteristics is available and provides an explicit formula for the solution of the PDE, in terms of the flow of the vector field $\mathbf b$. However, when we drop regularity assumptions on the velocity field, uniqueness is in general lost.
In the talk we will present an approach to the problem of uniqueness based on the concept of Lagrangian representation. This tool allows to represent a suitable class of vector fields as superposition of trajectories: we will then give local conditions to ensure that this representation induces a partition of the space-time made up of disjoint trajectories, along which the PDE can be disintegrated into a family of 1-dimensional equations. We will finally show that if $\mathbf b$ is locally of class $BV$ in the space variable, the decomposition satisfies this local structural assumption: this yields in particular the renormalization property for nearly incompressible $BV$ vector fields and thus gives a positive answer to the (weak) Bressan's Compactness Conjecture. This is a joint work with S. Bianchini.
 

Thu, 26 Apr 2018

16:00 - 17:00
L6

Fractional parts of polynomials

James Maynard
(University of Oxford)
Abstract

Let $f_1,\dots,f_k$ be real polynomials with no constant term and degree at most $d$. We will talk about work in progress showing that there are integers $n$ such that the fractional part of each of the $f_i(n)$ is very small, with the quantitative bound being essentially optimal in the $k$-aspect. This is based on the interplay between Fourier analysis, Diophantine approximation and the geometry of numbers. In particular, the key idea is to find strong additive structure in Fourier coefficients.

Thu, 14 Jun 2018

14:00 - 15:00
L4

Applied Random Matrix Theory

Prof. Joel Tropp
(Caltech)
Abstract

Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. Therefore, it is desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that balance these criteria. This talk offers an invitation to the field of matrix concentration inequalities and their applications.

Thu, 01 Nov 2018

16:00 - 17:30
L3

Ion migration in perovskite solar cells

Jamie Foster
(University of Portsmouth)
Abstract

J. M. Foster 1 , N. E. Courtier 2 , S. E. J. O’Kane 3 , J. M. Cave 3 , R. Niemann 4 , N. Phung 5 , A. Abate 5 , P. J. Cameron 4 , A. B. Walker 3 & G. Richardson 2 .

 

1 School of Mathematics & Physics, University of Portsmouth, UK. {@email}

2 School of Mathematics, University of Southampton, UK.

3 School of Physics, University of Bath, UK.

4 School of Chemistry, University of Bath, UK.

5 Helmholtz-Zentrum Berlin, Germany.

 

Metal halide perovskite has emerged as a highly promising photovoltaic material. Perovskite-based solar cells now exhibit power conversion efficiencies exceeding 22%; higher than that of market-leading multi-crystalline silicon, and comparable to the Shockley-Queisser limit of around 33% (the maximum obtainable efficiency for a single junction solar cell). In addition to fast electronic phenomena, occurring on timescales of nanoseconds, they also exhibit much slower dynamics on the timescales of several seconds and up to a day. One well-documented example of this is the ‘anomalous’ hysteresis observed in current-voltage scans where the applied voltage is varied whilst the output current is measured. There is now a consensus that this is caused by the motion of ions in the perovskite material affecting the internal electric field and in turn the electronic transport.

We will discuss the formulation of a drift-diffusion model for the coupled electronic and ionic transport in a perovskite solar cell as well as its systematic simplification via the method of matched asymptotic expansions. We will use the resulting reduced model to give a cogent explanation for some experimental observations including, (i) the apparent disappearance of current-voltage hysteresis for certain device architectures, and (ii) the slow fading of performance under illumination during the day and subsequent recovery in the dark overnight. Finally, we suggest ways in which materials and geometry can be chosen to reduce charge carrier recombination and improve device performance.

Thu, 25 Oct 2018

16:00 - 17:30
L3

Self-similar structure of caustics and shock formation

Jens Eggers
(University of Bristol)
Abstract

Caustics are places where the light intensity diverges, and where the wave front has a singularity. We use a self-similar description to derive the detailed spatial structure of a cusp singularity, from where caustic lines originate. We also study singularities of higher order, which have their own, uniquely three-dimensional structure. We use this insight to study shock formation in classical compressible Euler dynamics. The spatial structure of these shocks is that of a caustic, and is described by the same similarity equation.

Thu, 18 Oct 2018

16:00 - 17:30
L3

Periodic and localized structures in thin elastic plates

Fabian Brau
(Université libre de Bruxelles (ULB))
Abstract

Many types of patterns emerging spontaneously can be observed in systems involving thin elastic plates and subjected to external or internal stresses (compression, differential growth, shearing, tearing, etc.). These mechanical systems can sometime be seen as model systems for more complex natural systems and allow to study in detail elementary emerging patterns. One of the simplest among such systems is a bilayer composed of a thin plate resting on a thick deformable substrate. Upon slight compression, periodic undulations (wrinkles) with a well-defined wavelength emerge at the level of the thin layer. We will show that, as the compression increases, this periodic state is unstable and that a second order transition to a localized state (fold) occurs when the substrate is a dense fluid.

Subscribe to