Fri, 17 Nov 2017

14:15 - 15:15
C3

Toward attaining turbulent dynamos in the laboratory

Vassillios Dallas
(University of Oxford)
Abstract

The existence of planetary and stellar magnetic fields is attributed to the dynamo instability, the mechanism by which a background turbulent flow spontaneously generates a magnetic field by the constructive refolding of magnetic field lines. Many efforts have been made by several experimental groups to reproduce the dynamo instability in the laboratory using liquid metals. However, so far, unconstrained dynamos driven by turbulent flows have not been achieved in the intrinsically low magnetic Prandtl number $P_m$ (i.e. $Pm = Rm/Re << 1$) laboratory experiments. In this seminar I will demonstrate that the critical magnetic Reynolds number $Rm_c$ for turbulent non-helical dynamos in the low $P_m$ limit can be significantly reduced if the flow is submitted to global rotation. Even for moderate rotation rates the required energy injection rate can be reduced by a factor more than 1000. Our finding thus points into a new paradigm for the design of new liquid metal dynamo experiments.

Fri, 01 Dec 2017

14:15 - 15:15
C3

Linking past climate change and volcanism using geochemistry: a simple quantitative approach

Lawrence Percival
(University of Lausanne)
Abstract

The last 500 million years of Earth’s history have been punctuated by numerous episodes of abrupt climate change, some of them coincident with mass extinction events. Many of these climate events have been associated with massive volcanism, occurring during the emplacement of so-called Large Igneous Provinces (LIPs). Because of the significant impact of small modern eruptions on the Earth’s climate, a link between LIP volcanism and past climate change has been strongly advocated. Geochemical investigations of the sedimentary records which record major climate changes can give a profound insight into the proposed interactions between volcanic activity and climate. Mercury is a trace-gas emitted by modern volcanoes, which are the main source of this metal to the atmosphere. Ultimately atmospheric mercury is deposited in sediments, thus if enrichments in mercury are observed in sediments of the same age across the globe, a volcanic cause of these enrichments might be inferred. Osmium isotopes can also be used as a fingerprint of volcanic activity, as primitive basalts are enriched in unradiogenic 188Os. However, the continental crust is enriched in radiogenic 187Os. Therefore, the 187Os/188Os ratio can change with either more volcanic activity, or increased continental weathering during climate change. Changes in sedimentary mercury content and osmium isotopes can thus be used as markers of volcanism or weathering during climate events. However, a possible future step would be to quantify the amount of volcanism and/or weathering on the basis of these sedimentary excursions. The final part of this talk will introduce some simple quantitative models which may represent a first step towards such quantification, with the aim of further elaborating these models in the future.

Fri, 03 Nov 2017

14:15 - 15:15
C3

Compatible finite element methods for numerical weather prediction

Colin Cotter
(Imperial College London)
Abstract

I will describe our research on numerical methods for atmospheric dynamical cores based on compatible finite element methods. These methods extend the properties of the Arakawa C-grid to finite element methods by using compatible finite element spaces that respect the elementary identities of vector-calculus. These identities are crucial in demonstrating basic stability properties that are necessary to prevent the spurious numerical degradation of geophysical balances that would otherwise make numerical discretisations unusable for weather and climate prediction without the introduction of undesirable numerical dissipation. The extension to finite element methods allow these properties to be enjoyed on non-orthogonal grids, unstructured multiresolution grids, and with higher-order discretisations. In addition to these linear properties, for the shallow water equations, the compatible finite element structure can also be used to build numerical discretisations that respect conservation of energy, potential vorticity and enstrophy; I will survey these properties. We are currently developing a discretisation of the 3D compressible Euler equations based on this framework in the UK Dynamical Core project (nicknamed "Gung Ho"). The challenge is to design discretisation of the nonlinear operators that remain stable and accurate within the compatible finite element framework. I will survey our progress on this work to date and present some numerical results.

Fri, 20 Oct 2017
14:15
C3

Modelling wave–ice floe interactions and the overwash phenomenon

Luke Bennetts
(University of Adelaide)
Abstract

Following several decades of development by applied mathematicians, models of ocean wave interactions with sea ice floes are now in high demand due to the rapid recent changes in the world’s sea ice cover. From a mathematical perspective, the models are of interest due to the thinness of the floes, leading to elastic responses of the floes to waves, and the vast number of floes that waves encounter. Existing models are typically based on linear theories, but the thinness of the floes leads to the unique and highly nonlinear phenomenon of overwash, where waves run over the floes, in doing so dissipating wave energy and impacting the floes thermodynamically. I will give an overview of methods developed for the wave-floe problem, and present a new, bespoke overwash model, along with supporting laboratory experiments and numerical CFD simulations.

Oxford Mathematician Dmitry Belyaev is interested in the interface between analysis and probability. Here he discusses his latest work.

"There are two areas of mathematics that clearly have nothing to do with each other: projective geometry and conformally invariant critical models of statistical physics. It turns out that the situation is not as simple as it looks and these two areas might be connected.

Tue, 21 Nov 2017

15:45 - 16:45
L4

Mirror symmetry, mixed motives and zeta(3)

Wenzhe Yang
(University of Oxford)
Abstract

In mirror symmetry, the prepotential on the Kahler side has an expansion, the constant term of which is a rational multiple of zeta(3)/(2 pi i)^3 after an integral symplectic transformation. In this talk I will explain the connection between this constant term and the period of a mixed Hodge-Tate structure constructed from the limit MHS at large complex structure limit on the complex side. From Ayoub’s works on nearby cycle functor, there exists an object of Voevodsky’s category of mixed motives such that the mixed Hodge-Tate structure is expected to be a direct summand of the third cohomology of its Hodge realisation. I will present the connections between this constant term and conjecture about how mixed Tate motives sit inside Voevodsky’s category, which will also provide a motivic interpretation to the occurrence of zeta(3) in prepotential. 

Fri, 06 Oct 2017

16:00 - 17:00
C5

Some recent results in several complex variables and complex geometry

Xiangyu Zhou
(Chinese Academy of Science Beijing)
Abstract

After recalling some backgrounds and motivations, we'll report some recent results on the optimal L^2 extensions and multiplier ideal sheaves, with emphasizing the close relations between SCV and PDE.

Tue, 28 Nov 2017

15:45 - 16:45
L4

Specialization of (stable) rationality

Evgeny Shinder
(Sheffield)
Abstract

The specialization question for rationality is the following one: assume that very general fibers of a flat proper morphism are rational, does it imply that all fibers are rational? I will talk about recent solution of this question in characteristic zero due to myself and Nicaise, and Kontsevich-Tschinkel. The method relies on a construction of various specialization morphisms for the Grothendieck ring of varieties (stable rationality) and the Burnside ring of varieties (rationality), which in turn rely on the Weak Factorization and Semi-stable Reduction Theorems.

Tue, 14 Nov 2017

15:45 - 16:45
L4

Refined second Stiefel-Whitney classes and their applications in Donaldson-Thomas theory

Sven Meinhardt
(Sheffield)
Abstract

I will introduce a cohomology theory which combines topological and algebraic concepts. Interpretations of certain cohomology groups will be given. We also generalise the construction of the second Stiefel-Whitney class of a line bundle. As I will explain in my talk, the refined Stiefel-Whitney class of the canonical bundle on certain moduli stacks provides an obstruction for the construction of cohomological Hall algebras.

Tue, 31 Oct 2017

15:45 - 16:45
L4

Orbital degeneracy loci and applications

Sara Filippini
(Cambridge)
Abstract

We consider a generalization of degeneracy loci of morphisms between vector bundles based on orbit closures of algebraic groups in their linear representations. Using a certain crepancy condition on the orbit closure we gain some control over the canonical sheaf in a preferred class of examples. This is notably the case for Richardson nilpotent orbits and partially decomposable skew-symmetric three-forms in six variables. We show how these techniques can be applied to construct Calabi-Yau manifolds and Fano varieties of dimension three and four.

This is a joint work with Vladimiro Benedetti, Laurent Manivel and Fabio Tanturri.

Subscribe to