Tue, 07 Nov 2017
14:30
L6

On Reed's Conjecture

Luke Postle
(University of Waterloo)
Abstract

Reed conjectured in 1998 that the chromatic number of a graph should be at most the average of the clique number (a trivial lower bound) and maximum degree plus one (a trivial upper bound); in support of this conjecture, Reed proved that the chromatic number is at most some nontrivial convex combination of these two quantities.  King and Reed later showed that a fraction of roughly 1/130000 away from the upper bound holds. Motivated by a paper by Bruhn and Joos, last year Bonamy, Perrett, and I proved that for large enough maximum degree, a fraction of 1/26 away from the upper bound holds. Then using new techniques, Delcourt and I showed that the list-coloring version holds; moreover, we improved the fraction for ordinary coloring to 1/13. Most recently, Kelly and I proved that a 'local' list version holds with a fraction of 1/52 wherein the degrees, list sizes, and clique sizes of vertices are allowed to vary.
 

Tue, 24 Oct 2017
14:30
L6

Zero forcing in random and pseudorandom graphs

Nina Kamcev
(ETH Zurich)
Abstract

A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set in G. It was introduced independently as a bound for the minimum rank of a graph, and as a tool in quantum information theory.

The focus of this talk is on the forcing number of the random graph. Furthermore, we will state our bounds on the forcing number of pseudorandom graphs and related problems. The results are joint work with Thomas Kalinowski and Benny Sudakov.

Tue, 17 Oct 2017
14:30
L6

Intersecting Families of Permutations

Michelle Delcourt
(Birmingham University)
Abstract

Enumerating families of combinatorial objects with given properties and describing the typical structure of these objects are fundamental problems in extremal combinatorics. In this talk, we will investigate intersecting families of discrete structures in various settings, determining their typical structure as the size of the underlying ground set tends to infinity. Our new approach outlines a general framework for a number of similar problems; in particular, we prove analogous results for hypergraphs, permutations, and vector spaces using the same technique. This is joint work with József Balogh, Shagnik Das, Hong Liu, and Maryam Sharifzadeh.

Tue, 10 Oct 2017
14:30
L6

Random Triangles in Random Graphs

Oliver Riordan
(Oxford University)
Abstract

Given a graph $G$, we can form a hypergraph $H$ whose edges correspond to the triangles in $G$. If $G$ is the standard Erdős-Rényi random graph with independent edges, then $H$ is random, but its edges are not independent, because of overlapping triangles. This is (presumably!) a major complication when proving results about triangles in random graphs.  However, it turns out that, for many purposes, we can treat the triangles as independent, in a one-sided sense (and losing something in the density): we can find an independent random hypergraph within the set of triangles. I will present two proofs, one of which generalizes to larger complete (and some non-complete) subgraphs.

Mon, 13 Nov 2017
12:45
L3

Chiral Algebras for four dimensional N=4 SCFT

Carlo Meneghelli
(Oxford)
Abstract


Any four dimensional N=2 superconformal field theory (SCFT) contains a subsector of local operator which is isomorphic to a two dimensional chiral algebra.  If the 4d theory possesses N= 4 superconformal symmetry, the corresponding chiral algebra is an extension of the (small) N=4 super-Virasoro algebra.  In this talk I  will present some results on the classification of N=4 chiral algebras and discuss the conditions they should satisfy in order to correspond to a 4d theory. 
 

 
The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part VI: IceCube-Gen2, the next generation neutrino observatory
Aartsen Ackermann, M Adams, J Sarkar, S 35th International Cosmic Ray Conference (ICRC 2017) (01 Aug 2017)
The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part I: Searches for the Sources of Astrophysical Neutrinos
Ackermann, M Adams, J Sarkar, S 35th International Cosmic Ray Conference 2017(ICRC2017) (01 Aug 2017)
The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part II: Properties of the Atmospheric and Astrophysical Neutrino Flux
Aartsen Ackermann, M Adams, J Sarkar, S IceCube Collaboration (01 Aug 2017)
The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part III: Cosmic Rays
Aartsen Ackermann, M Adams, J Sarkar, S 35th International Cosmic Ray Conference 2017(ICRC2017) (01 Aug 2017)
Subscribe to