15:45
A Reduced Tensor Product of Braided Fusion Categories containing a Symmetric Fusion Category
Abstract
In this talk I will construct a reduced tensor product of braided fusion categories containing a symmetric fusion category $\mathcal{A}$. This tensor product takes into account the relative braiding with respect to objects of $\mathcal{A}$ in these braided fusion categories. The resulting category is again a braided fusion category containing $\mathcal{A}$. This tensor product is inspired by the tensor product of $G$-equivariant once-extended three-dimensional quantum field theories, for a finite group $G$.
To define this reduced tensor product, we equip the Drinfeld centre $\mathcal{Z}(\mathcal{A})$ of the symmetric fusion category $\mathcal{A}$ with an unusual tensor product, making $\mathcal{Z}(\mathcal{A})$ into a 2-fold monoidal category. Using this 2-fold structure, we introduce a new type of category enriched over the Drinfeld centre to capture the braiding behaviour with respect to $\mathcal{A}$ in the braided fusion categories, and use this encoding to define the reduced tensor product.
Superradiance by charged black holes, a numerical exploration
Abstract
Superradiance in black hole spacetimes is a phenomenon by which a field of spin 0 or 1 can extract energy from the background. Typically, one can imagine sending a wave packet with a given energy towards a black hole and receiving in return a superposition of wave packets carrying a total amount of energy that is larger than the energy sent in. It can be caused by rotation or by interaction between the charges of the black hole and the field. In the first case, the region where superradiance takes place (the ergoregion) has a clear geometrical localization depending only on the physical parameters of the black hole. For charge induced superradiance, this is not the case and we have a generalized ergoregion depending also on the physical properties of the field (mass, charge, angular momentum). In the most severe cases, the generalized ergoregion may cover the whole exterior of the black hole. We focus on charge-induced superradiance for spin 0 fields in spherically symmetric situations. Alain Bachelot wrote a thorough theoretical study of this question in 2004, which, to my knowledge, is the only work of its kind. When I was in Bordeaux, he and I discussed the possibility of investigating superradiance numerically. Over the years it became an actual research project, involving Laurent Di Menza and more recently Mathieu Pellen, of which this talk is an account. The idea was to observe numerically some superradiant behaviours and gain a more precise understanding of the phenomenon. We shall show an exact analogue of the Penrose process with the superradiance of wave packets and a slightly different behaviour for fields "emerging" inside the ergoregion. We shall also explore the related question of black hole bombs and present some recent observations.
Convergence and new perspectives in perturbative algebraic quantum field theory
Abstract
In this talk I will present recent results obtained within the
framework of perturbative algebraic quantum field theory. This novel
approach to mathematical foundations of quantum field theory allows to
combine the axiomatic framework of algebraic QFT by Haag and Kastler with
perturbative methods. Recently also non-perturbative results have been
obtained within this approach. I will report on these results and present
new perspectives that they open for better understanding of foundations of
QFT.
Mirror symmetry for affine hypersurfaces
Abstract
Using tropical geometry and new methods in the theory of Fukaya categories, we explain a mirror symmetry equivalence relating the Fukaya category of a hypersurface and the category of coherent sheaves on the boundary of a toric variety.
12:45
Analysis of small contacts between particles in a furnace
Abstract
Many metallurgical processes involve the heat treatment of granular material due to large alternating currents. To understand how the current propagates through the material, one must understand the bulk resistivity, that is, the resistivity of the granular material as a whole. The literature suggests that the resistance due to contacts between particles contributes significantly to the bulk resistivity, therefore one must pay particular attention to these contacts.
My work is focused on understanding the precise impact of small contacts on the current propagation. The scale of the contacts is several order of magnitude smaller than that of the furnace itself, therefore we apply matched asymptotics methods to study how the current varies with the size of the contact.
Maximal Hypersurfaces with boundary conditions
Abstract
We construct maximal surfaces with Neumann boundary conditions in Minkowski space using mean curvature flow. In particular we find curvature conditions on a boundary manifold so that mean curvature flow may be shown to exist for all time, and give conditions under which the maximal hypersurfaces are stable under the flow.
Multiparameter persistent homology: applications and algorithms
Abstract
In this talk I will first briefly introduce 1-parameter persistent homology, and discuss some applications and the theoretical challenges in the multiparameter case. If time remains I will explain how tools from commutative algebra give invariants suitable for the study of data. This last part is based on the preprint https://arxiv.org/abs/1708.07390.
14:30
Polynomail Expansion
Abstract
A class C of graphs has polynomial expansion if there exists a polynomial p such that for every graph G from C and for every integer r, each minor of G obtained by contracting disjoint subgraphs of radius at most r is p(r)-degenerate. Classes with polynomial expansion exhibit interesting structural, combinatorial, and algorithmic properties. In the talk, I will survey these properties and propose further research directions.
14:30
On Reed's Conjecture
Abstract
Reed conjectured in 1998 that the chromatic number of a graph should be at most the average of the clique number (a trivial lower bound) and maximum degree plus one (a trivial upper bound); in support of this conjecture, Reed proved that the chromatic number is at most some nontrivial convex combination of these two quantities. King and Reed later showed that a fraction of roughly 1/130000 away from the upper bound holds. Motivated by a paper by Bruhn and Joos, last year Bonamy, Perrett, and I proved that for large enough maximum degree, a fraction of 1/26 away from the upper bound holds. Then using new techniques, Delcourt and I showed that the list-coloring version holds; moreover, we improved the fraction for ordinary coloring to 1/13. Most recently, Kelly and I proved that a 'local' list version holds with a fraction of 1/52 wherein the degrees, list sizes, and clique sizes of vertices are allowed to vary.