The IceCube Neutrino Observatory: Contributions to ICRC 2017 Part V: Solar flares, supernovae, event reconstruction, education & outreach
Aartsen Ackermann, M Adams, J Sarkar, S 35th International Cosmic Ray Conference (ICRC 2017) (01 Aug 2017)
Tue, 24 Oct 2017

15:45 - 16:45
L4

********* Algebraic Geometry Seminar ********* Title: An asymptotic Nullstellensatz for curves

Udi Hrushovski
(Oxford)
Abstract

Hilbert's Nullstellensatz asserts the existence of a complex point satisfying lying on a given variety, provided there is no (ideal-theoretic) proof to the contrary.
I will describe an analogue for curves (of unbounded degree), with respect to conditions specifying that they lie on a given smooth variety, and have homology class
near a specified ray.   In particular, an analogue of the Lefschetz principle (relating large positive characteristic to characteristic zero) becomes available for such questions.
The proof is very close to a theorem of  Boucksom-Demailly-Pau-Peternell on moveable curves, but requires a certain sharpening.   This is part of a joint project with Itai Ben Yaacov, investigating the logic of the product formula; the algebro-geometric statement is needed for proving the existential closure of $\Cc(t)^{alg}$ in this language.  
 

Mon, 30 Oct 2017
12:45
L3

Generalized Seiberg-Witten equations and almost-Hermitian geometry

Varun Thakre
(ICTS Bengaluru)
Abstract

I will talk about a generalisation of the Seiberg-Witten equations introduced by Taubes and Pidstrygach, in dimension 3 and 4 respectively, where the spinor representation is replaced by a hyperKahler manifold admitting certain symmetries. I will discuss the 4-dimensional equations and their relation with the almost-Kahler geometry of the underlying 4-manifold. In particular, I will show that the equations can be interpreted in terms of a PDE for an almost-complex structure on 4-manifold. This generalises a result of Donaldson. 

 
Tue, 24 Oct 2017

15:45 - 16:45
L4

An asymptotic Nullstellensatz for curves

Udi Hrushovski
(Oxford)
Abstract

Hilbert's Nullstellensatz asserts the existence of a complex point satisfying lying on a given variety, provided there is no (ideal-theoretic) proof to the contrary.
I will describe an analogue for curves (of unbounded degree), with respect to conditions specifying that they lie on a given smooth variety, and have homology class
near a specified ray.   In particular, an analogue of the Lefschetz principle (relating large positive characteristic to characteristic zero) becomes available for such questions.
The proof is very close to a theorem of  Boucksom-Demailly-Pau-Peternell on moveable curves, but requires a certain sharpening.   This is part of a joint project with Itai Ben Yaacov, investigating the logic of the product formula; the algebro-geometric statement is needed for proving the existential closure of $\Cc(t)^{alg}$ in this language. 

Dame Frances Kirwan has been elected to the Savilian Professorship at the University of Oxford. Frances will be the 20th holder of the Savilian Chair (founded in 1619), and is the first woman to be elected to any of the historic chairs in mathematics.

Frances has received many honours including being elected a Fellow of the Royal Society in 2001 (only the third female mathematician to attain this honour), and President of the London Mathematical Society from 2003-2005 (only the second female ever elected).

Oxford Mathematics in partnership with the Science Museum is delighted to announce its first Public Lecture in London. World-renowned mathematician Andrew Wiles will be our speaker. Andrew will be talking about his current work and will also be in conversation with mathematician and broadcaster Hannah Fry after the lecture. Attendance is free.

28th November, 6.30pm, Science Museum, London, SW7 2DD

Subscribe to