Mon, 06 Nov 2017

14:15 - 15:15
L3

Volume distribution of nodal domains of random band-limited functions

IGOR WIGMAN
(Kings College London)
Abstract

This talk is based on a joint work with Dmitry Beliaev.

We study the volume distribution of nodal domains of families of naturally arising Gaussian random field on generic manifolds, namely random band-limited functions. It is found that in the high energy limit a typical instance obeys a deterministic universal law, independent of the manifold. Some of the basic qualitative properties of this law, such as its support, monotonicity and continuity of the cumulative probability function, are established.

Mon, 30 Oct 2017

15:45 - 16:45
L3

Statistics and Rough Paths

ANASTASIA PAPAVASILEIOU
(University of Warwick)
Abstract

Having made sense of differential equations driven by rough paths, we now have a new set of models available but when it comes to calibrating them to data, the tools are still underdeveloped. I will present some results and discuss some challenges related to building these tools.

Mon, 30 Oct 2017

14:15 - 14:45
L3

Loewner equation driven by complex-valued driving functions

HUY TRAN
(UCLA/TU Berlin)
Abstract

Consider the Loewner equation associated to the upper-half plane. This is an equation originated from an extremal problem in complex analysis. Nowadays, it attracts a lot of attention due to its connection to probability. Normally this equation is driven by a real-valued function. In this talk, we will show that the equation still makes sense when being driven by a complex-valued function. We will relate this situation to the classical situation and also to complex dynamics. 

Mon, 23 Oct 2017

15:45 - 16:45
L3

The signature approach for the supervised learning problem with sequential data input and its application

Hao Ni
(University College London)
Abstract

In the talk, we discuss how to combine the recurrent neural network with the signature feature set to tackle the supervised learning problem where the input is a data stream. We will apply this method to different datasets, including the synthetic datasets( learning the solution to SDEs ) and empirical datasets(action recognition) and demonstrate the effectiveness of this method.

 

Mon, 23 Oct 2017

14:15 - 15:15
L3

On some heavy-tail phenomena occurring in large deviations

FANNY AUGERI
(Weizmann Institute Israel)
Abstract

In this talk, we will revisit the proof of the large deviations principle of Wiener chaoses partially given by Borell, and then by Ledoux in its full form. We show that some heavy-tail phenomena observed in large deviations can be explained by the same mechanism as for the Wiener chaoses, meaning that the deviations are created, in a sense, by translations. More precisely, we prove a general large deviations principle for a certain class of functionals $f_n : \mathbb{R}^n \to \mathcal{X}$, where $\mathcal{X}$ is some metric space, under the probability measure $\nu_{\alpha}^n$, where $\nu_{\alpha} =Z_{\alpha}^{-1}e^{-|x|^{\alpha}}dx$, $\alpha \in (0,2]$, for which the large deviations are due to translations. We retrieve, as an application, the large deviations principles known for the so-called Wigner matrices without Gaussian tails of the empirical spectral measure, the largest eigenvalue, and traces of polynomials. We also apply our large deviations result to the last-passage time which yields a large deviations principle when the weight matrix has law $\mu_{\alpha}^{n^2}$, where $\mu_{\alpha}$ is the probability measure on $\mathbb{R}^+$ with density $2Z_{\alpha}^{-1}e^{-x^{\alpha}}$ when $\alpha \in (0,1)$.

 

Mon, 16 Oct 2017

15:45 - 16:45
L3

A signature-based machine learning model for bipolar disorder and borderline personality disorder

IMANOL PEREZ
(University of Oxford)
Abstract

The signature of a path has many properties that make it an excellent feature to be used in machine learning. We exploit this properties to analyse a stream of data that arises from a psychiatric study whose objective is to analyse bipolar and borderline personality disorders. We build a machine learning model based on signatures that tries to answer two clinically relevant questions, based on observations of their reported state over a short period of time: is it possible to predict if a person is healthy, has bipolar disorder or has borderline personality disorder? And given a person or borderline personality disorder, it is possible to predict his or her future mood? Signatures proved to be very effective to tackle these two problems.

Mon, 16 Oct 2017

14:15 - 15:15
L3

On uniqueness and blowup properties for a class of second order SDES

EYAL NEUMAN
(Imperial College London)
Abstract

 

Abstract. As the first  step for approaching the uniqueness and blowup properties of the solutions of the stochastic wave equations with multi-plicative noise, we analyze the conditions for the uniqueness and blowup properties of the solution (Xt; Yt) of the equations dXt = Ytdt, dYt = jXtj_dBt, (X0; Y0) = (x0; y0). In particular, we prove that solutions arenonunique if 0 < _ < 1 and (x0; y0) = (0; 0) and unique if 1=2 < _ and (x0; y0) 6= (0; 0). We also show that blowup in _nite time holds if _ > 1 and (x0; y0) 6= (0; 0).

This is a joint work with A. Gomez, J.J. Lee, C. Mueller and M. Salins.

 

Mon, 09 Oct 2017

14:15 - 15:15
L3

Inverting the signature of a path

JIAWEI CHANG
(University of Oxford)
Abstract

Inverting the signature of a path with ideas from linear algebra with implementations.

Subscribe to