Tue, 10 Oct 2017

14:30 - 15:00
L5

A novel DG method using the principle of discrete least squares

Jan Glaubitz
(TU Braunschweig)
Abstract

In this talk, a novel discontinuous Galerkin (DG) method is introduced by utilising the principle of discrete least squares. The key idea is to build polynomial approximations by the method of  (weighted) discrete least squares instead of usual interpolation or (discrete) $L^2$ projections. The resulting method hence uses more information of the underlying function and provides a more robust alternative to common DG methods. As a result, we are able to construct high-order schemes which are conservative as well as linear stable on any set of collocation points. Several numerical tests highlight the new discontinuous Galerkin discrete least squares (DG-DLS) method to significantly outperform present-day DG methods.

Mon, 13 Nov 2017

14:15 - 15:15
L5

Surface homeomorphisms and their lifts by covering maps

Mehdi Yazdi
(Oxford)
Abstract

A generic surface homeomorphism (up to isotopy) is what we call it pseudo-Anosov. These maps come equipped with an algebraic integer that measures
how much the map stretches/shrinks in different direction, called the stretch factor. Given a surface homeomorsphism, one can ask if it is the lift (by a branched or unbranched cover) of another homeomorphism on a simpler surface possibly of small genus. Farb conjectured that if the algebraic degree of the stretch factor is bounded above, then the map can be obtained by lifting another homeomorphism on a surface of bounded genus.
This was known to be true for quadratic algebraic integers by a Theorem of Franks-Rykken. We construct counterexamples to Farb's conjecture.

 

Thu, 14 Sep 2017

17:00 - 18:00
L3

Homological stability and meta-stability for mapping class groups

Soren Galatius
(Stanford and Copenhagen)
Abstract

Let \Gamma_{g,1} denote the mapping class group of a genus g surface with one parametrized boundary component.  The group homology H_i(\Gamma_{g,1}) is independent of g, as long as g is large compared to i, by a famous theorem of Harer known as homological stability, now known to hold when 2g > 3i.  Outside that range, the relative homology groups H_i(\Gamma_{g,1},\Gamma_{g-1,1}) contain interesting information about the failure of homological stability.  In this talk, I will discuss a metastability result; the relative groups depend only on the number k = 2g-3i, as long as g is large compared to k.  This is joint work with Alexander Kupers and Oscar Randal-Williams.

Thu, 14 Sep 2017

15:30 - 16:30
L3

The smooth homotopy category

Graeme Segal
(Oxford)
Abstract

The smooth homotopy category is a simultaneous enlargement of the usual homotopy category and of the category of smooth manifolds. Its structure can be described very simply and explicitly by a version of van Est's theorem.  It provides us with an  interpolation between topology and geometry (and with a toy model of derived algebraic geometry and motivic homotopy theory, though I shall not pursue those directions).  My talk will list some situations which the category seems to illuminate: one will be Kapranov's beautiful description of the Lie algebra of the 'group' of based loops in a manifold.
 

Mon, 30 Oct 2017

14:15 - 15:15
L5

Almost Kähler 4-manifolds of Constant Holomorphic Sectional Curvature are Kähler

Markus Upmeier
(Oxford)
Abstract

We show that a closed almost Kähler 4-manifold of globally constant holomorphic sectional curvature k<=0 with respect to the canonical Hermitian connection is automatically Kähler. The same result holds for k < 0 if we require in addition that the Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern–Weil theory implies useful integral formulas, which are then combined with results from Seiberg–Witten theory.

Medicines are key to disease treatment but are not without risk. Some patients get untoward side effects, some get insufficient relief. The human genome project promises to revolutionise modern health-care. However, there are 3 billion places where a human’s DNA can be different. Just where are the genes of interest in sufferers of complex chronic conditions? Which genes are implicated the most in which disease in which patients? Which genes are involved in a beneficial response to a medicine? Which genes might be predictive of drug-induced adverse events?

Thu, 09 Nov 2017

12:00 - 13:00
L4

Two-dimensional pseudo-gravity model: particles motion in a non-potential singular force field

Dan Crisan
(Department of Mathematics, Imperial College London)
Abstract

I will describe a simple macroscopic model describing the evolution of a cloud of particles confined in a magneto-optical trap. The behavior of the particles is mainly driven by self--consistent attractive forces. In contrast to the standard model of gravitational forces, the force field does not result from a potential; moreover, the nonlinear coupling is more singular than the coupling based on the Poisson equation.  In addition to existence of uniqueness results of the model PDE, I will discuss the convergence of the  particles description towards the solution of the PDE system in the mean field regime.

Mon, 23 Oct 2017

14:15 - 15:15
L5

Cubic fourfolds, K3 surfaces, and mirror symmetry

Nicholas Sheridan
(Cambridge)
Abstract

While many cubic fourfolds are known to be rational, it is expected that the very general cubic fourfold is irrational (although none have been
proven to be so). There is a conjecture for precisely which cubics are rational, which can be expressed in Hodge-theoretic terms (by work of Hassett)
or in terms of derived categories (by work of Kuznetsov). The conjecture can be phrased as saying that one can associate a `noncommutative K3 surface' to any cubic fourfold, and the rational ones are precisely those for which this noncommutative K3 is `geometric', i.e., equivalent to an honest K3 surface. It turns out that the noncommutative K3 associated to a cubic fourfold has a conjectural symplectic mirror (due to  Batyrev-Borisov). In contrast to the algebraic side of the story, the mirror is always `geometric': i.e., it is always just an honest K3 surface equipped with an appropriate Kähler form. After explaining this background, I will state a theorem: homological mirror symmetry holds in this context (joint work with Ivan Smith).

 

Thu, 02 Nov 2017
16:00
L6

Norm relations and Euler systems

Christopher Skinner
(Princeton)
Abstract

This talk will report on the definition of some motivic cohomology classes and the proof that they satisfy the norm relations expected of Euler systems, emphasizing a connection with the local Gan-Gross-Prasad conjecture.

Thu, 26 Oct 2017
16:00
L6

Joint Number Theory / Logic Seminar: Virtual rigid motives of semi-algebraic sets in valued fields

Arthur Forey
(Institut de mathématiques de Jussieu)
Abstract

Let k be a field of characteristic zero and K=k((t)). Semi-algebraic sets over K are boolean combinations of algebraic sets and sets defined by valuative inequalities. The associated Grothendieck ring has been studied by Hrushovski and Kazhdan who link it via motivic integration to the Grothendieck ring of varieties over k. I will present a morphism from the former to the Grothendieck ring of motives of rigid analytic varieties over K in the sense of Ayoub. This allows to refine the comparison by Ayoub, Ivorra and Sebag between motivic Milnor fibre and motivic nearby cycle functor.
 

Subscribe to