Thu, 25 Jan 2018

16:00 - 17:30
L3

Stochasticity and robustness in morphogenesis

Arezki Boudaoud
(École Normale Supérieure de Lyon)
Abstract

How do organisms cope with cellular variability to achieve well-defined morphologies and architectures? We are addressing this question by combining experiments with live plants and analyses of (stochastic) models that integrate cell-cell communication and tissue mechanics. During the talk, I will survey our results concerning plant architecture (phyllotaxis) and organ morphogenesis.

Thu, 18 Jan 2018

16:00 - 17:30
L3

Cascade dynamics on networks

James Gleeson
(University of Limerick)
Abstract

Network models may be applied to describe many complex systems, and in the era of online social networks the study of dynamics on networks is an important branch of computational social science.  Cascade dynamics can occur when the state of a node is affected by the states of its neighbours in the network, for example when a Twitter user is inspired to retweet a message that she received from a user she follows, with one event (the retweet) potentially causing further events (retweets by followers of followers) in a chain reaction. In this talk I will review some simple models that can help us understand how social contagion (the spread of cultural fads and the viral diffusion of information) depends upon the structure of the social network and on the dynamics of human behaviour. Although the models are simple enough to allow for mathematical analysis, I will show examples where they can also provide good matches to empirical observations of cascades on social networks.

Mon, 09 Oct 2017

14:15 - 15:15
L4

Morse inequalities for arbitrary smooth functions

Frances Kirwan
(Oxford)
Abstract

A Morse function (and more generally a Morse-Bott function) on a compact manifold M has associated Morse inequalities. The aim of this
talk is to explain how we can associate Morse inequalities to any smooth function on M (reporting on work of/with G Penington).

 

Thu, 12 Oct 2017
16:00
L6

Heights and anabelian geometry

Alexander Betts
(Oxford)
Abstract

For a smooth variety over a number field, one defines various different homology groups (Betti, de Rham, etale, log-crystalline), which carry various kinds of enriching structure and are thought of as a system of realisations for a putative underlying (mixed) motivic homology group. Following Deligne, one can study fundamental groups in the same way, and the study of specific realisations of the motivic fundamental group has already found Diophantine applications, for instance in the anabelian proof of Siegel's theorem by Kim.

It is hoped that study of fundamental groups should give one access to ``higher'' arithmetic information not visible in the first cohomology, for instance classical and p-adic heights. In this talk, we will discuss recent work making this hope concrete, by demonstrating how local components of canonical heights on abelian varieties admit a natural description in terms of fundamental groups.

Tue, 28 Nov 2017

16:00 - 17:00
C2

Applications of model theory to the study of Roelcke precompact groups and their actions ***Note change of room***

Todor Tsankov
(Institut de mathématiques de Jussieu)
Abstract

Roelcke precompact groups are exactly the topological groups that can be realized as automorphism groups of omega-categorical structures (in continuous logic). In this talk, I will discuss a model-theoretic framework for the study of those groups and their dynamical systems as well as two concrete applications. The talk is based on joint work with Itaï Ben Yaacov and Tomás Ibarlucía.

Tue, 21 Nov 2017

16:00 - 17:00
L5

Distal Shelah Expansions

Lotte Kestner
(Imperial College)
Abstract

 

(Joint with Gareth Boxall) In this talk I will introduce some properties of distal theories. I will remark that distality is preserved neither under reducts nor expansions of the language. I will then go on to discuss a recent result that the Shelah expansion of a theory is distal if and only if the theory itself is distal. 

Tue, 14 Nov 2017

16:00 - 17:00
L5

Crisis in Foundations: is it really happening?

Mirna Dzamonja
(UEA)
Abstract

We discuss the connections and differences between the ZFC set theory and univalent foundations and answer the above question in the negative.
 

Tue, 07 Nov 2017

16:00 - 17:00
L5

Topological dynamics and the complexity of strong types

Krzysztof Krupiński
(University of Wrocław)
Abstract

The talk is based on my joint work with Anand Pillay and Tomasz Rzepecki.

I will describe some connections between various objects from topological dynamics associated with a given first order theory and various Galois groups of this theory. One of the main corollaries is a natural presentation of the closure of the neutral element of the Lascar Galois group of any given theory $T$ (this closure is a group sometimes denoted by $Gal_0(T)$) as a quotient of a compact Hausdorff group by a dense subgroup.

As an application, I will present a very general theorem concerning the complexity of bounded, invariant equivalence relations (whose classes are sometimes called strong types) in countable theories, generalizing a theorem of Kaplan, Miller and Simon concerning Borel cardinalities of Lascar strong types and also later extensions of this result to certain bounded, $F_\sigma$ equivalence relations (which were obtained in a paper of Kaplan and Miller and, independently, in a paper of Rzepecki and myself). The main point of our general theorem says that in a countable theory, any bounded, invariant equivalence relation defined
on the set of realizations of a single complete type over $\emptyset$ is type-definable if and only if it is smooth (in the sense of descriptive set theory). If time permits, I will very briefly mention more recent developments in this direction (also based on the results from the first paragraph) which will appear in my future paper with Rzepecki.
 

Tue, 31 Oct 2017

16:00 - 17:00
L5

Notions of difference closures of difference fields.

Zoe Chatzidakis
(CNRS and Ecole Normale Superieure)
Abstract


It is well known that the theory of differentially closed fields of characteristic 0 has prime models and that they are unique up to isomorphism. One can ask the same question for the theory ACFA of existentially closed difference fields (recall that a difference field is a field with an automorphism).

In this talk, I will first give the trivial reasons of why this question cannot have a positive answer. It could however be the case that over certain difference fields prime models (of the theory ACFA) exist and are unique. Such a prime model would be called a difference closure of the difference field K. I will show by an example that the obvious conditions on K do not suffice.

I will then consider the class of aleph-epsilon saturated models of ACFA, or of kappa-saturated models of ACFA. There are natural notions of aleph-epsilon prime model and kappa-prime model. It turns out that for these stronger notions, if K is an algebraically closed difference field of characteristic 0, with fixed subfield F aleph-epsilon saturated, then there is an aleph-epsilon prime model over K, and it is unique up to K-isomorphism. A similar result holds for kappa-prime when kappa is a regular cardinal.

None of this extends to positive characteristic.
 

Subscribe to