Taxation and death may be inevitable but what about crime? It is ubiquitous and seems to have been around for as long as human beings themselves. A disease we cannot shake. However, therein lies an idea, one that Oxford Mathematician Soumya Banerjee and colleagues have used as the basis for understanding and quantifying crime.

Mon, 04 Sep 2017

12:00 - 13:00
N4.01

Some Mathematical Theories of Boundary Layers with no-slip Boundary Condition

Tong Yang
(City University of Hong Kong)
Abstract

After a brief review on the classical Prandtl system, we introduce our recent work on the well-posedness and high Reynolds numbers limit for the MHD boundary layer that shows the tangential magnetic field stabilizes the boundary layer. And then we will discuss some instability phenomena of the shear flow for both the classical Prandtl and MHD boundary layer systems. The talk includes some recent joint works with Chengjie Liu, Yaguang Wang on the classical Prandtl equation, and with Chengjie Liu and Feng Xie on the magnetohydrodynamic boundary layer.

Tue, 26 Sep 2017

14:00 - 14:30
C4

Low algebraic dimension matrix completion

Greg Ongie
(University of Michigan)
Abstract

We consider a generalization of low-rank matrix completion to the case where the data belongs to an algebraic variety, i.e., each data point is a solution to a system of polynomial equations. In this case, the original matrix is possibly high-rank, but it becomes low-rank after mapping each column to a higher dimensional space of monomial features. Many well-studied extensions of linear models, including affine subspaces and their union, can be described by a variety model. We study the sampling requirements for matrix completion under a variety model with a focus on a union of subspaces. We also propose an efficient matrix completion algorithm that minimizes a surrogate of the rank of the matrix of monomial features, which is able to recover synthetically generated data up to the predicted sampling complexity bounds. The proposed algorithm also outperforms standard low-rank matrix completion and subspace clustering techniques in experiments with real data.

Tue, 07 Nov 2017

14:00 - 14:30
L5

OSQP: An Operator Splitting Solver for Quadratic Programs

Bartolomeo Stellato
(Oxford University)
Abstract

We develop a general purpose solver for quadratic programs based on operator splitting. We introduce a novel splitting that requires the solution of a quasi-definite linear system with the same coefficient matrix in each iteration. The resulting algorithm is very robust, and once the initial factorization is carried out, division free; it also eliminates requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. Moreover, it is able to detect primal or dual infeasible problems providing infeasibility certificates. The method supports caching the factorization of the quasi-definite system and warm starting, making it efficient for solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint and is library-free. Numerical benchmarks on problems arising from several application domains show that OSQP is typically 10x faster than interior-point methods, especially when factorization caching or warm start is used.


This is joint work with Goran Banjac, Paul Goulart, Alberto Bemporad and Stephen Boyd
 

Mon, 23 Oct 2017

16:00 - 17:00
L4

On some problems in random geometry and PDE's

Eero Saksman
(University of Helsinki)
Abstract

We consider a couple of problems belonging to Random Geometry, and describe some new analytical challenges they pose for planar PDE's via Beltrami equations. The talk is based on joint work with various people including K. Astala, P. Jones, A. Kupiainen, Steffen Rohde and T. Tao.

Thu, 24 Aug 2017

15:00 - 16:00
L6

Unbounded derived categories and the finitistic dimension conjecture.

Jeremy Rickard
(Bristol University)
Abstract

Abstract: If A is a finite dimensional algebra, and D(A) the unbounded
derived category of the full module category Mod-A, then it is
straightforward to see that D(A) is generated (as a "localizing
subcategory") by the indecomposable projectives, and by the simple 
modules. It is not so obvious whether it is generated by the 
indecomposable injectives. In 2001, Keller gave a talk in which he 
remarked that"injectives generate" would imply several of the well-known
homological conjectures, such as the Nunke condition and hence the 
generalized Nakayama
conjecture, and asked if there was any relation to the finitistic 
dimension conjecture. I'll show that an algebra that satisfies "injectives 
generate" also satisfies the finitistic dimension conjecture and discuss 
some examples. I'll present things in a fairly concrete way, so most of 
the talk won't assume much knowledge of derived categories.

 

Thu, 24 Aug 2017

14:00 - 15:00
L6

On Hochschild cohomology and global/local structures

Lleonard Rubio y Degrassi
(City University London)
Abstract

Abstract: In this talk I will discuss the interplay between the local and
the global invariants in modular representation theory with a focus on the
first Hochschild cohomology $\mathrm{HH}^1(B)$ of a block algebra $B$. In
particular, I will show the compatibility between $r$-integrable 
derivations
and stable equivalences of Morita type. I will also show that if
$\mathrm{HH}^1(B)$ is a simple Lie algebra such that $B$ has a unique
isomorphism class of simple modules, then $B$ is nilpotent with an
elementary abelian defect group $P$ of order at least 3. The second part 
is joint work with M. Linckelmann.

Thu, 24 Aug 2017

11:30 - 12:30
L6

Quivers and Conformal Field Theory: preprojective algebras and beyond.

Alastair King
(Bath University)
Abstract

Abstract: I will describe how the ADE preprojective algebras appear in 
certain Conformal Field Theories, namely SU(2) WZW models, and explain
the generalisation to the SU(3) case, where 'almost CY3' algebras appear.

Subscribe to