14:15
Representation theoretic Dirac operators
Abstract
I will explain how Dirac operators provide precious information about geometric and algebraic aspects of representations of real Lie groups. In particular, we obtain an explicit realisation of representations, leading terms in the asymptotics of characters and a precise connection with nilpotent orbits.
16:00
Classifications of Topological Quantum Field Theories
Abstract
TQFTs lie at the intersection of maths and theoretical physics. Topologically, they are a recipe for calculating an invariant of manifolds by cutting them into elementary pieces; physically, they describe the evolution of the state of a particle. These two viewpoints allow physical intuition to be harnessed to shed light on topological problems, including understanding the topology of 4-manifolds and calculating geometric invariants using topology.
Recent results have provided classifications of certain types of TQFTs as algebraic structures. After reviewing the definition of TQFTs and giving some diagrammatic examples, I will give informal arguments as to how these classifications arise. Finally, I will show that in many cases these algebras are in fact free, and give an explicit classification of them in this case.
interactions in IceCube
The Oberwolfach Research Institute for Mathematics, 1944-1963
Abstract
The Oberwolfach Research Institute for Mathematics (Mathematisches Forschungsinstitut Oberwolfach/MFO) was founded in late 1944 by the Freiburg mathematician Wilhelm Süss (1895-1958) as the „National Institute for Mathematics“. In the 1950s and 1960s the MFO developed into an increasingly international conference centre.
The aim of my project is to analyse the history of the MFO as it institutionally changed from the National Institute for Mathematics with a wide, but standard range of responsibilities, to an international social infrastructure for research completely new in the framework of German academia. The project focusses on the evolvement of the institutional identity of the MFO between 1944 and the early 1960s, namely the development and importance of the MFO’s scientific programme (workshops, team work, Bourbaki) and the instruments of research employed (library, workshops) as well as the corresponding strategies to safeguard the MFO’s existence (for instance under the wings of the Max-Planck-Society). In particular, three aspects are key to the project, namely the analyses of the historical processes of (1) the development and shaping of the MFO’s workshop activities, (2) the (complex) institutional safeguarding of the MFO, and (3) the role the MFO played for the re-internationalisation of mathematics in Germany. Thus the project opens a window on topics of more general relevance in the history of science such as the complexity of science funding and the re-internationalisation of the sciences in the early years of the Federal Republic of Germany.
Soules vectors: applications in graph theory and the inverse eigenvalue problem
Abstract
George Soules [1] introduced a set of vectors $r_1,...,r_N$ with the remarkable property that for any set of ordered numbers $\lambda_1\geq\dots\geq\lambda_N$, the matrix $\sum_n \lambda_nr_nr_n^T$ has nonnegative off-diagonal entries. Later, it was found [2] that there exists a whole class of such vectors - Soules vectors - which are intimately connected to binary rooted trees. In this talk I will describe the construction of Soules vectors starting from a binary rooted tree, and introduce some basic properties. I will also cover a number of applications: the inverse eigenvalue problem, equitable partitions in Laplacian matrices and the eigendecomposition of the Clauset-Moore-Newman hierarchical random graph model.
[1] Soules (1983), Constructing Symmetric Nonnegative Matrices
[2] Elsner, Nabben and Neumann (1998), Orthogonal bases that lead to symmetric nonnegative matrices
Potential operators, analyticity and bounded holomorphic functional calculus for the Stokes operator
Abstract
This is part of a meeting of the North British Functional Aanlysis Seminar. There will be a tea break (15:30-16:00)
In a first talk, I shall recall the basic definitions and properties of ${\mathcal{H}}^\infty}$ functional calculus. I shall show how a second order problem can be reduced to a first order system and how to construct potential operators.
In a second talk, we will see how to use potential operators for the specific problem of the Stokes operator with the so-called “natural” boundary conditions in non smooth domains.
Most parts which will be presented are taken from a joint work with Alan McIntosh (to be published soon in the journal "Revista Matematica Iberoamericana”)