O-minimality and Cox rings over number fields for Manin’s conjecture
Abstract
Manin’s conjecture predicts the asymptotic behavior of the number of rational points of bounded height on Fano varieties over number fields. We prove this conjecture for a family of nonsplit singular quartic del Pezzo surfaces over arbitrary number fields. For the proof, we parameterize the rational points on such a del Pezzo surface by integral points on a nonuniversal torsor (which is determined explicitly using a Cox ring of a certain type), and we count them using a result of Barroero-Widmer on lattice points in o-minimal structures. This is joint work in progress with Marta Pieropan.