Thu, 01 Jun 2017

14:00 - 15:00
L4

Randomized methods for accelerating matrix factorization algorithms

Prof. Gunnar Martinsson
(Oxford University)
Abstract


The talk will describe accelerated algorithms for computing full or partial matrix factorizations such as the eigenvalue decomposition, the QR factorization, etc. The key technical novelty is the use of  randomized projections to reduce the effective dimensionality of  intermediate steps in the computation. The resulting algorithms execute faster on modern hardware than traditional algorithms, and are particularly well suited for processing very large data sets.

The algorithms described are supported by a rigorous mathematical analysis that exploits recent work in random matrix theory. The talk will briefly review some representative theoretical results.

Thu, 04 May 2017

14:00 - 15:00
L4

Sampling in shift-invariant spaces

Prof. Karlheinz Groechenig
(University of Vienna)
Abstract


Abstract: We study nonuniform sampling in shift-invariant spaces whose generator is a totally positive function. For a subclass of such generators the sampling theorems can be formulated in analogy to the theorems of Beurling and Landau for bandlimited functions. These results are  optimal and validate  the  heuristic reasonings in the engineering literature. In contrast to the cardinal series, the reconstruction procedures for sampling in a shift-invariant space with a totally positive generator  are local and thus accessible to numerical linear algebra.

A subtle  connection between sampling in shift-invariant spaces and the theory of Gabor frames leads to new and optimal  results for Gabor frames.  We show that the set of phase-space shifts of  $g$ (totally positive with a Gaussian part) with respect to a rectangular lattice forms a frame, if and only if the density of the lattice  is strictly larger than 1. This solves an open problem going backto Daubechies in 1990 for the class of totally positive functions of Gaussian type.
 

Thu, 27 Apr 2017

14:00 - 15:00
L4

Risk-averse optimization of partial differential equations with random inputs

Thomas Surowiec
(Marburg University)
Abstract

Almost all real-world applications involve a degree of uncertainty. This may be the result of noisy measurements, restrictions on observability, or simply unforeseen events. Since many models in both engineering and the natural sciences make use of partial differential equations (PDEs), it is natural to consider PDEs with random inputs. In this context, passing from modelling and simulation to optimization or control results in stochastic PDE-constrained optimization problems. This leads to a number of theoretical, algorithmic, and numerical challenges.

 From a mathematical standpoint, the solution of the underlying PDE is a random field, which in turn makes the quantity of interest or the objective function an implicitly defined random variable. In order to minimize this distributed objective, one can use, e.g., stochastic order constraints, a distributionally robust approach, or risk measures. In this talk, we will make use of risk measures.

After motivating the approach via a model for the mitigation of an airborne pollutant, we build up an analytical framework and introduce some useful risk measures. This allows us to prove the existence of solutions and derive optimality conditions. We then present several approximation schemes for handling non-smooth risk measures in order to leverage existing numerical methods from PDE-constrained optimization. Finally, we discuss solutions techniques and illustrate our results with numerical examples.

Tue, 07 Mar 2017
11:00
C5

Unlikely Intersections in families of elliptic curves

Laura Capuano
(Oxford)
Abstract


What makes an intersection likely or unlikely? A simple dimension count shows that two varieties of dimension r and s are non "likely" to intersect if r < codim s, unless there are some special geometrical relations among them. A series of conjectures due to Bombieri-Masser-Zannier, Zilber and Pink rely on this philosophy. I will speak about a joint work with F. Barroero (Basel) in this framework in the special case of a curve in a family of elliptic curves. The proof is based on Pila-Zannier method, combining diophantine ingredients with a refinement of a theorem of Pila and Wilkie about counting rational points in sets definable in o-minimal structures.
   Everyone welcome!
 

A resting frog can deform the lily pad on which it sits. The weight of the frog applies a localised load to the lily pad (which is supported by the buoyancy of the liquid below), thus deforming the pad. Whether or not the frog knows it, the physical scenario of a floating elastic sheet subject to an applied load is present in a diverse range of situations spanning a spectrum of length scales. At global scales the gravitational loading of the lithosphere by mountain ranges and volcanic sea mounts involve much the same physical ingredients.

The classic picture of how spheres deform (e.g. when poked) is that they adopt something called 'mirror buckling' - this is a special deformation (an isometry) that is geometrically very elegant. This deformation is also very cheap (in terms of the elastic energy) and so it has long been assumed that this is what a physical shell (e.g. a ping pong ball or beach ball) will do when poked. However, experience shows that actually many shells don’t adopt this state - instead, beach balls wrinkle and ping pong balls crumple.

Tue, 14 Mar 2017

14:45 - 15:45
L4

The topology of the Wilsonahedron: A small case study

Susama Agarwala
(USNA)
Abstract

In this talk, I discuss the positive geometry of the Wilson Loop Diagrams appearing in SYM N-4 theory. In particular, I define an algorithm for associating Wilson Loop diagrams to convex cells of the positive Grassmannians. Using combinatorics of these cells, I then consider the geometry of N^2MHV diagrams on 6 points.

Tue, 07 Mar 2017

13:00 - 14:00
N3.12

Sequences

TBA
Fri, 07 Apr 2017

12:00 - 13:00
L6

Nonlinear stability of relativistic vortex sheets in two spatial dimensions

Tao Wang
(University of Brescia)
Abstract

We study vortex sheets for the relativistic Euler equations in three-dimensional Minkowski spacetime. The problem is a nonlinear hyperbolic problem with a characteristic free boundary. The so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. A necessary condition for the weak stability is obtained by analyzing roots of the Lopatinskii determinant associated to the linearized problem. Under such stability condition,  we prove short-time existence and nonlinear stability of relativistic vortex sheets by the Nash-Moser iterative scheme.

Fri, 07 Apr 2017

11:00 - 12:00
L6

On the weakly nonlinear Kelvin-Helmholtz instability of current-vortex sheets

Paolo Secchi
(University of Brescia)
Abstract

We consider the free boundary problem for 2D current-vortex sheets in ideal incompressible magneto-hydrodynamics near the transition point between the linearized stability and instability. In order to study the dynamics of the discontinuity near the onset of the instability, Hunter and Thoo have introduced an asymptotic quadratically nonlinear integro-differential equation for the amplitude of small perturbations of the planar discontinuity. 
In this talk we present our results about the well-posedness of the problem in the sense of Hadamard, under a suitable stability condition, that is the 
local-in-time existence in Sobolev spaces and uniqueness of smooth solutions to the Cauchy problem, and the strong continuous dependence on the data in the same topology.
Joint works with: Alessandro Morando and Paola Trebeschi.
 

Subscribe to