Tue, 30 May 2017

12:00 - 13:00
L4

Supertwistors: the massless, the massive, and the AdS

Paul Townsend
(DAMTP Cambridge)
Abstract

Some recent applications of supertwistors to superparticle mechanics will be reviewed.
First: Supertwistors allow a simple quantization of the  N-extended 4D massless superparticle, and peculiarities of massless 4D supermultiplets can then be explained by considering the quantum fate of a classical ``worldline CPT'' symmetry. For N=1 there is a global CPT anomaly, which explains why there is no CPT self-conjugate supermultiplet. For N=2 there is no anomaly but a Kramers degeneracy explains the doubling of states in the CPT self-conjugate hypermultiplet.
Second: the bi-supertwistor formulation of the N-extended massive superparticle in 3D, 4D and 6D makes manifest a ``hidden’’ 2N-extended supersymmetry. It also has a simple expression in terms of hermitian 2x2 matrices over the associative division algebras R,C,H.
Third: omission of the mass-shell constraint in this 3D,4D,6D bi-supertwistor action yields, as suggested  by holography, the action for a supergraviton in 4D,5D,7D AdS. Application to the near horizon AdSxS geometries of the M2,D3 and M5 brane confirms that the graviton supermultiplet has 128+128 polarisation states. 

Thu, 16 Mar 2017

14:30 - 15:30
L5

"Algebraically closed fields of characteristic 1."

Boris Zilber
(Oxford)
Abstract

 I will start with a motivation of what algebraic and model-theoretic properties an algebraically closed field of characteristic 1 is expected to have. Then I will explain how these properties forces one to follow the route of Hrushovski's construction leading to a a 'pseudo-analytic' structure which we identify as an algebraically closed field of characteristic 1 . Then I am able to formulate very precise axioms that such a field must satisfy.  The main theorem then states that under the axioms the structure has the desired algebraic and analytic properties. The axioms have a form of statements about existence of solutions to systems of equations in terms of a 'multi-dimensional' valuation theory and the validity of these statements is an open problem to be discussed. 
This is a joint work with Alex Cruz Morales.
 

Thu, 16 Mar 2017

12:00 - 13:00
L5

"Analytic geometry over the field with one element"

Yakov Kremnitzer
(Oxford)
Abstract

1.Kremnitzer. I will explain an approach to constructing geometries relative to a symmetric monoidal 
category. I will then introduce the category of normed sets as a possible analytic geometry over 
the field with one element. I will show that the Fargues-Fontaine curve from p-adic Hodge theory and 
the Connes-Bost system are naturally interpreted in this geometry. This is joint work with Federico Bambozzi and 
Oren Ben-Bassat.
 

Thu, 04 May 2017
16:00
L6

Joint Number Theory/Logic Seminar: On the Hilbert Property and the fundamental group of algebraic varieties

Umberto Zannier
(Scuola Normale Superiore di Pisa)
Abstract

This  concerns recent work with P. Corvaja in which we relate the Hilbert Property for an algebraic variety (a kind of axiom linked with Hilbert Irreducibility, relevant e.g. for the Inverse Galois Problem)  with the fundamental group of the variety.
 In particular, this leads to new examples (of surfaces) of  failure of the Hilbert Property. We also prove the Hilbert Property for a non-rational surface (whereas all previous examples involved rational varieties).

Thu, 25 May 2017
16:00
L6

Reduction of dynatomic curves

Holly Krieger
(Cambridge)
Abstract

Dynatomic curves parametrize n-periodic orbits of a one-parameter family of polynomial dynamical systems. These curves lack the structure of their arithmetic-geometric analogues (modular curves of level n) but can be studied dynamically.  Morton and Silverman conjectured a dynamical analogue of the uniform boundedness conjecture (theorems of Mazur, Merel), asserting uniform bounds for the number of rational periodic points for such a family.  I will discuss recent work towards the function field version of their conjecture, including results on the reduction mod p of dynatomic curves for the quadratic polynomial family z^2+c.

Oxford Mathematician Neave O’Clery recently moved to Oxford from the Center for International Development at Harvard University where she worked on the development of mathematical models to describe the processes behind industrial diversification and economic growth. Here she discusses how network science can help us understand the success of cities, and provide practical tools for policy-makers. 

Fri, 09 Jun 2017

14:00 - 15:00
L3

From estimating motion to monitoring complex behaviour in cellular systems

Professor Jens Rittscher
(Dept of Engineering Science University of Oxford)
Abstract

Building on advancements in computer vision we now have an array of visual tracking methods that allow the reliable estimation of cellular motion in high-throughput settings as well as more complex biological specimens. In many cases the underlying assumptions of these methods are still not well defined and result in failures when analysing large scale experiments.

Using organotypic co-culture systems we can now mimic more physiologically relevant microenvironments in vitro.  The robust analysis of cellular dynamics in such complex biological systems remains an open challenge. I will attempt to outline some of these challenges and provide some very preliminary results on analysing more complex cellular behaviours.

Subscribe to