Mon, 21 May 2018
12:45
L3

Exotic Rational Conformal Field Theories and the Modular Bootstrap

Sunil Mukhi
(IISER Pune)
Abstract

 I will summarise old and recent developments on the classification and solution of Rational Conformal Field Theories in 2 dimensions using the method of Modular Differential Equations. Novel and exotic theories are found with small numbers of characters and simple fusion rules, one of these being the Baby Monster CFT. Correlation functions for many of these theories can be computed using crossing-symmetric differential equations.

 
Mon, 14 May 2018
12:45
L3

Trace Anomalies and Boundary Conformal Field Theory

Chris Herzog
(Kings College London)
Abstract



The central charges “c” and “a” in two and four dimensional conformal field theories (CFTs) have a central organizing role in our understanding of quantum field theory (QFT) more generally.  Appearing as coefficients of curvature invariants in the anomalous trace of the stress tensor, they constrain the possible relationships between QFTs under renormalization group flow.  They provide important checks for dualities between different CFTs.  They even have an important connection to a measure of quantum entanglement, the entanglement entropy.  Less well known is that additional central charges appear when there is a boundary, four new coefficients in total in three and four dimensional boundary CFTs.   While largely unstudied, these boundary charges hold out the tantalizing possibility of being as important in the classification of quantum field theory as the bulk central charges “a” and “c”.   I will show how these charges can be computed from displacement operator correlation functions.  I will also demonstrate a boundary conformal field theory in four dimensions with an exactly marginal coupling where these boundary charges depend on the marginal coupling.  The talk is based on arXiv:1707.06224, arXiv:1709.07431, as well as work to appear shortly.  

 
Tue, 15 May 2018

14:30 - 15:00
L5

Solving the Schrödinger equation with a time-dependent potential

Pranav Singh
Abstract

The Schrödinger equation with a time-dependent potential occurs in a wide range of applications in theoretical chemistry, quantum physics and quantum computing. In this talk I will discuss a variety of Magnus expansion based schemes that have been found to be highly effective for numerically solving these equations since the pioneering work of Tal Ezer and Kosloff in the early 90s. Recent developments in the field focus on approximation of the exponential of the Magnus expansion via exponential splittings including some asymptotic splittings and commutator-free splittings that are designed specifically for this task.

I will also present a very recently developed methodology for the case of laser-matter interaction. This methodology allows us to extend any fourth-order scheme for Schrödinger equation with time-independent potential to a fourth-order method for Schrödinger equation with laser potential with little to no additional cost. These fourth-order methods improve upon many leading schemes of order six due to their low costs and small error constants.

 

Wed, 16 May 2018
15:00

Challenges of End-to-End Encryption in Facebook Messenger

Jon Millican
(Facebook)
Abstract

In 2016, Facebook added an optional end-to-end (E2E) encryption feature called Secret Conversations to Messenger. This was challenging to design, as many of Messenger's key properties and features don't fit the typical model of E2E apps. Additionally, Messenger is already one of the world's most popular messaging apps, supporting nearly a billion people across a variety of technical and cultural environments. Because of this, Messenger's deployment of E2E encryption provides attendees with a valuable case study on how to build usable, secure products. 

We will discuss the core properties of a typical E2E app, the core features of Messenger, the distance between the two, and the approach we took to close the gap. We'll examine how minimizing the distance shaped the current E2E experience within Messenger. Through discussion of the key decisions in this process, we'll address the implications for alternative designs with real world comparisons where they exist. 

Although Secret Conversations in Messenger use off-the-shelf Signal Protocol for message encryption, Facebook also wanted to ensure a safe communication channel for community members who may be victims of online abuse. To this end, we created a way for people to report secret conversations that violate our Community Standards, without breaking any E2E guarantees for other messages.

Developing a reporting protocol created an interesting challenge: the potential of fake reports with no intermediary to invalidate them. To pre-empt the possibility of Bob forging a report to incriminate Alice, we added a method that uses two HMACs - one added by the sender and one by Facebook - to “cryptographically frank” messages as we forward them from one party to the other (physical mail uses a similar franking). This technique ensures similar confidence that a report is genuine as we have for messages stored in plaintext on our servers. Additionally, the frank is only verifiable by Facebook after receiving a report from the recipient, thus preventing a third party from using it as evidence against the sender.

We hope that this talk will provide an insight into the intricacies of deploying security features at scale, and the additional considerations necessary when developing an existing product.

Tue, 15 May 2018

12:45 - 13:30
C5

Complex singularities near the intersection of a free-surface and a rigid wall

Thomas Chandler
Abstract

It is known that in steady-state potential flows, the separation of a gravity-driven free-surface from a solid exhibits a number of peculiar characteristics. For example, it can be shown that the fluid must separate from the body so as to form one of three possible in-fluid angles: (i) 180°, (ii) 120°, or (iii) an angle such that the surface is locally perpendicular to the direction of gravity. These necessary separation conditions were notably remarked by Dagan & Tulin (1972) in the context of ship hydrodynamics [J. Fluid Mech., 51(3) pp. 520-543], but they are of crucial importance in many potential flow applications. It is not particularly well understood why there is such a drastic change in the local separation behaviours when the global flow is altered. The question that motivates this work is the following: outside a formal balance-of-terms arguments, why must (i) through (iii) occur and furthermore, what is the connections between them?

              In this work, we seek to explain the transitions between the three cases in terms of the singularity structure of the associated solutions once they are extended into the complex plane. A numerical scheme is presented for the analytic continuation of a vertical jet (or alternatively a rising bubble). It will be shown that the transition between the three cases can be predicted by observing the coalescence of singularities as the speed of the jet is modified. A scaling law is derived for the coalescence rate of singularities.

The northern site of the Pierre Auger Observatory
Blümer, J New Journal of Physics volume 12 issue 3 035001 (01 Mar 2010)
Subscribe to