Thu, 23 Feb 2017
11:00
C5

Non-reduced schemes and Zariski Geometries

Alfonso Ruiz
(Oxford)
Abstract

Using results by Eisenbud, Schoutens and Zilber I will propose a model theoretic structure that aims to capture the algebra (or geometry) of a non reduced scheme over an algebraically closed field. 

The International Congresses of Mathematicians (ICMs) take place every four years at different locations around the globe, and are the largest regular gatherings of mathematicians from all nations.  However, as much as the assembled mathematicians may like to pretend that these gatherings transcend politics, they have always been coloured by world events: the congresses prior to the Second World War saw friction between French and German mathematicians, for example, whilst Cold War political tensions likewise shaped the conduct of later congresses.

Fri, 03 Mar 2017

10:00 - 11:00
L4

Predictions for Roads

Steve Hilditch
(Thales)
Abstract

Road travel is taking longer each year in the UK. This has been true for the last four years. Travel times have increased by 4% in the last two years. Applying the principle finding of the Eddington Report 2006, this change over the last two years will cost the UK economy an additional £2bn per year going forward even without further deterioration. Additional travel times are matched by a greater unreliability of travel times.

Knowing demand and road capacity, can we predict travel times?

We will look briefly at previous partial solutions and the abundance of motorway data in the UK. Can we make a breakthrough to achieve real-time predictions?

Mon, 13 Mar 2017

15:30 - 16:30
L5

Stable twisted cohomology via scanning

Oscar Randal-Williams
(Cambridge)
Abstract

The technique of scanning, or the parameterised Pontrjagin--Thom construction, has been extraordinarily successful in calculating the cohomology of configuration spaces (McDuff), moduli spaces of Riemann surfaces (Madsen, Tillmann, Weiss), moduli spaces of graphs (Galatius), and moduli spaces of manifolds of higher dimension (Galatius, R-W, Botvinnik, Perlmutter), with constant coefficients. In each case the method also works to study the cohomology of moduli spaces of objects equipped with a "tangential structure". I will explain how choosing an auxiliary highly-symmetric tangential structure often lets one calculate the cohomology of these moduli spaces with large families of twisted coefficients, by exploiting the symmetries of the tangential structure and using a little representation theory.

 

Mon, 13 Mar 2017

14:00 - 15:00
L5

Operad groups and the homology of the Higman-Thompson groups

Nathalie Wahl
(Copenhagen)
Abstract

 Markus Szymik and I computed the homology of the Higman-Thompson groups by first showing that they stabilize (with slope 0), and then computing the stable homology. I will in this talk give a new point of view on the computation of the stable homology using Thumann's "operad groups". I will also give an idea of how scanning methods can enter the picture. (This is partially joint work with Søren Galatius.) 

Mon, 13 Mar 2017

11:30 - 12:30
L5

Homotopical properties of the diffeomorphism group of a smooth homotopy sphere

Michael Weiss
(Muenster)
Abstract

It is hard to detect the exotic nature of an exotic n-sphere M 
in homotopical features of the diffeomorphism group Diff(M). The well 
known reason is that Diff(M) contains a big topological subgroup H which 
is identified with the group of diffeomorphisms rel boundary of the 
n-disk, with a small coset space Diff(M)/H which is invariably homotopy 
equivalent to O(n+1). Therefore it seems that our only chance to detect 
the exotic nature of M in homotopical features of Diff(M) is to see 
something in this extension.  (To make sense of "homotopical features of 
Diff(M)" one should think of Diff(M) as a space with a multiplication 
acting on an n-sphere.) I am planning to report on PhD work of O Sommer 
and calculations due to myself and Sommer which, if all goes well, would 
show that Diff(M) has some exotic homotopical properties in the case 
where M is the 7-dimensional exotic sphere of Kervaire-Milnor fame which 
bounds a compact smooth framed 8-manifold of signature 8. The 
theoretical work is based on classical smoothing theory and the 
calculations would be based on ever-ongoing (>30 years) joint work 
Weiss-Williams, and might give me and Williams another valuable 
incentive to finish it.

Mon, 13 Mar 2017

11:00 - 11:30
L5

Diffeomorphism-equivariant configuration spaces with twisted summable labels

Hongyun Yon
(Oxford)
Abstract

We construct the diffeomorphism-equivariant “scanning map” associated to the configuration spaces of manifolds with twisted summable labels. The scanning map is also functorial with respect to embeddings of manifolds. To adapt P. Salvatore's idea of non-commutative summation into twisted setting, we define a bundle of Fulton-MacPherson operads over a manifold M whose fibres are built within tangent spaces of M.

Mon, 13 Mar 2017

09:30 - 10:30
L5

Surgery on manifolds: the early days

Terry Wall
(Liverpool)
Abstract

In 1956 Milnor published a paper proving that there are manifolds homeomorphic to the 7-sphere but not diffeomorphic to it. Seeking to generalise this example, he was led in around 1960 to introduce a construction for  killing homotopy groups of manifolds. When this was generalised to killing relative homotopy groups it became a general and powerful method of construction. An obstruction arises to killing the last group, and the analysis of this obstruction in general leads to a new theory.

Mon, 27 Feb 2017
15:45
L6

From moduli spaces of manifolds to K-theory

Ulrike Tillmann
(Oxford)
Abstract

For mapping class groups of surfaces it is well-understood that their homology stability is closely related to the fact that they give rise to an infinite loop space. Indeed, they define an operad whose algebras group complete to infinite loop spaces.

In recent work with Basterra, Bobkova, Ponto and Yaekel we define operads with homology stability (OHS) more generally and prove that they are infinite loop space operads in the above sense. The strong homology stability results of Galatius and Randal-Williams for moduli spaces of manifolds can be used to construct examples of OHSs. As a consequence the map to K-theory defined by the action of the diffeomorphisms on the middle dimensional homology can be shown to be a map of infinite loop spaces.

Subscribe to