The rolling of dice in a casino, Heisenberg's uncertainty, the meaning of consciousness. All are explored as Marcus takes us on a personal journey into the realms of the scientific unknown. Are we forever incapable of understanding all of the world around us or is it perhaps just a question of language, not having the right words to describe what we see?

 

 

 

 

 

 

 

 

 

Mon, 16 May 2016
16:00
C3

Curves and their fundamental groups

Junghwan Lim
((Oxford University))
Abstract

I will describe a sketch of the proof of Grothendieck conjecture on fundamental groups.
 

Mon, 16 May 2016

12:00 - 13:00
L3

A metric and geometry for heterotic moduli

Jock McOrist
(Surrey)
Abstract

Heterotic vacua, defined with a holomorphic bundle and connection satisfying hermitian Yang-Mills, realise four-dimensional chiral gauge theories. We exploit the rich interplay between four-dimensional physics, supersymmetry and  geometry to construct a natural Kaehler metric for the moduli space, with a shockingly simple Kaehler potential. Along the way, we discover a natural geometric structure for the heterotic moduli.
 

Developmental environment effects on sexual selection in male and female drosophila melanogaster
Morimoto Borges, J Pizzari, T Wigby, S PLoS One volume 11 issue 5 (01 Jan 2016)
Tue, 17 May 2016

12:00 - 13:15
L4

On-shell recursion at one loop in pure Yang-Mills theory, to an extent.

Dr Rutger Boels
(DESY, Hamburg)
Abstract

Loop computations put the 'quantum' into quantum field theory. Much effort has focused on their structure and properties, with most spectacular progress in maximally supersymmetric gauge theories in the planar limit. These theories are however quite far from reality as described for instance in the standard model of particle physics. In this talk I'll report on ongoing work using BCFW on-shell recursion to obtain loop amplitude integrands in a much more realistic theory, pure Yang-Mills theory, using methods which apply directly to the standard model.

Tue, 17 May 2016

12:45 - 13:30
C5

Sorting of micro-swimmers in flowing visco-elastic fluids

Arnold Mathijssen
(University of Oxford)
Abstract

Interactions between micro-swimmers and their complex flow environments are important in many biological systems, such as sperm cells swimming in cervical mucus or bacteria in biofilm initiation areas. We present a theoretical model describing the dynamics of micro-organisms swimming in a plane Poiseuille flow of a viscoelastic fluid, accounting for hydrodynamic interactions and biological noise. General non-Newtonian effects are investigated, including shear-thinning and normal stress differences that lead to migration of the organisms across the streamlines of the background flow. We show that micro-swimmers are driven towards the centre-line of the channel, even if countered by hydrodynamic interactions with the channel walls that typically lead to boundary accumulation. Furthermore, we demonstrate that the normal stress differences reorient the swimmers at the centre-line in the direction against the flow so that they swim upstream. This suggests a natural sorting mechanism to select swimmers with a given swimming speed larger than the tunable Poiseuille flow velocity. This framework is then extended to study trapping and colony formation of pathogens near surfaces, in corners and crevices. 

Wed, 25 May 2016
16:00
L6

A counterexample concerning regularity properties for systems of conservation laws

Laura Caravenna
(Università degli Studi di Padova)
Abstract
In 1973 D. G. Schaeffer established an interesting regularity result that applies to scalar conservation laws with uniformly convex fluxes. Loosely speaking, it can be formulated as follows: for a generic smooth initial datum, the admissible solution is smooth outside a locally finite number of curves in the time-space plane. Here the term ``generic`` should be interpreted in a suitable technical sense, related to the Baire Category Theorem. Several author improved later his result, also for numerical purposes, while only C. M. Dafermos and X. Cheng extended it in 1991 to a special 2x2 system with coinciding shock and rarefaction curves and which satisfies an assumption that reframes what in the scalar case is the assumption of uniformly convex flux, called `genuine nonlinearity'. My talk will aim at discussing a recent explicit counterexample that shows that for systems of at least three equations, even when the flux satisfies the assumption of genuinely nonlinearity, Schaeffer`s Theorem does not extend because countably many shocks might develop from a ``big`` family of smooth initial data. I will then mention related works in progress.
Wed, 08 Jun 2016
16:00
C2

Intensional Partial Metric Spaces

Steve Matthews
(Warwick)
Abstract

Partial metric spaces generalise metric spaces by allowing self-distance
to be a non-negative number. Originally motivated by the goal to
reconcile metric space topology with the logic of computable functions
and Dana Scott's innovative theory of topological domains they are now
too rigid a form of mathematics to be of use in modelling contemporary
applications software (aka 'Apps') which is increasingly concurrent,
pragmatic, interactive, rapidly changing, and inconsistent in nature.
This talks aims to further develop partial metric spaces in order to
catch up with the modern computer science of 'Apps'. Our illustrative
working example is that of the 'Lucid' programming language,and it's
temporal generalisation using Wadge's 'hiaton'.

Subscribe to