Mon, 09 May 2016
16:00
C3

Descent of a sum of Consecutive Cubes ... Twice!!

Vandita Patel
(Warwick University)
Abstract

Given an integer $d$ such that $2 \leq d \leq 50$, we want to
answer the question: When is the sum of
$d$ consecutive cubes a perfect power? In other words, we want to find all
integer solutions to the equation
$(x+1)^3 + (x+2)^3 + \cdots + (x+d)^3 = y^p$. In this talk, we present some
of the techniques used to tackle such diophantine problems.

 

Lowering IceCube's energy threshold for point source searches in the southern sky
Sarkar, S Astrophysical Journal Letters volume 824 issue 2 L28 (01 Jun 2016)
Mon, 13 Jun 2016

15:45 - 16:45
C6

Homogenization for families of skew products

ALEXEY KOREPANOV
(Warwick University)
Abstract

 

We consider families of fast-slow skew product maps of the form \begin{align*}x_{n+1}   = x_n+\eps^2 a_\eps(x_n,y_n)+\eps b_\eps(x_n)v_\eps(y_n), \quad

y_{n+1}   = T_\eps y_n, \end{align*} where $T_\eps$ is a family of nonuniformly expanding maps, $v_\eps$ is of mean zero and the slow variables $x_n$ lie in $\R^d$.  Under an exactness assumption on $b_\eps$ (automatically satisfied in the cases $d=1$ and $b_\eps\equiv I_d$), we prove convergence of the slow variables to a limiting stochastic differential equation (SDE) as $\eps\to0$.   Our results include cases where the family of fast dynamical systems

$T_\eps$ consists of intermittent maps, unimodal maps (along the Collet-Eckmann parameters) and Viana maps.Similar results are obtained also for continuous time systems  \begin{align*} \dot x   =  \eps^2 a_\eps(x,y,\eps)+\eps b_\eps(x)v_\eps(y), \quad \dot y   =  g_\eps(y). \end{align*}

Here, as in classical Wong-Zakai approximation, the limiting SDE is of Stratonovich type $dX=\bar a(X)\,dt+b_0(X)\circ\,dW$ where $\bar a$ is the average of $a_0$

and $W$ is a $d$-dimensional Brownian motion.

 

Thu, 09 Jun 2016

15:00 - 16:00
L4

A Decomposition of the Set of Enhanced Langlands Parameters for a p-adic Reductive Group

Anne-Marie Aubert
(Paris Jussieu)
Abstract

Enhanced Langlands parameters for a p-adic group G are pairs formed by a Langlands parameter for G and an irreducible character of a certain component group attached to the parameter. We will first introduce a notion
of cuspidality for these pairs. The cuspidal pairs are expected to correspond to the supercuspidal irreducible representations of G via the local Langlands correspondence.
We will next describe a construction of  a cuspidal support map for enhanced Langlands parameters, the key tool of which is an extension to disconnected complex Lie groups of the generalized Springer correspondence due to Lusztig.
Finally, we will use this map to decompose  the set of enhanced Langlands parameters into Bernstein series.
This is joint work with Ahmed Moussaoui and Maarten Solleveld.

Tue, 14 Jun 2016

15:45 - 16:45
L4

Symplectic homology for cobordisms

Alexandru Oancea
(Jussieu)
Abstract

I will present a definition of symplectic homology groups for pairs of Liouville cobordisms with fillings, and explain how these fit into a formalism of homology theory similar to that of Eilenberg and Steenrod. This construction allows to understand form a unified point of view many structural results involving Floer homology groups, and yields new applications. Joint work with Kai Cieliebak.

Tue, 31 May 2016

15:45 - 16:45
L4

Non-reductive GIT for graded groups and curve counting

Greg Berczi
(Oxford)
Abstract
I will start with a short report on recent progress in constructing quotients by actions of non-reductive algebraic groups and extending Mumford's geometric invariant theory to a wide class of non-reductive linear algebraic groups which we call graded groups. I will then explain how certain components of the Hilbert scheme of points on smooth varieties can be described as non-reductive quotients and why this description is especially efficient to study the topology of Hilbert schemes. In particular I will explain how equivariant localisation can be used to develop iterated residue formulae for tautological integrals on geometric subsets of Hilbert schemes and I present new formulae counting curves on surfaces (and more generally hypersurfaces in smooth varieties) with given singularity classes. This talk is based on joint works with Frances Kirwan, Thomas Hawes, Brent Doran and Andras Szenes. 
Thu, 05 May 2016

16:00 - 17:00
C5

Deligne’s construction for extending connections

Francis Bischoff
(University of Toronto)
Abstract

Let X be a complex manifold with divisor D. I will describe a construction, which is due to Deligne, whereby given a choice of a branch of the logarithm one can canonically extend a holomorphic flat connection on the complement of the divisor X\D to a flat logarithmic connection on X.

Frost heave is a common problem in any country where the temperature drops below 0 degrees Celsius. It’s most commonly known as the cause of potholes that form in roads during winter, costing billions of dollars worth of damage worldwide each year. However, despite this, it is still not well understood. For example, the commonly accepted explanation of how it occurs is that water expands as it freezes, and this expansion tears open the surrounding material.

Subscribe to